Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=-3 ab=1\left(-28\right)=-28
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als x^{2}+ax+bx-28. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-28 2,-14 4,-7
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -28 geven weergeven.
1-28=-27 2-14=-12 4-7=-3
Bereken de som voor elk paar.
a=-7 b=4
De oplossing is het paar dat de som -3 geeft.
\left(x^{2}-7x\right)+\left(4x-28\right)
Herschrijf x^{2}-3x-28 als \left(x^{2}-7x\right)+\left(4x-28\right).
x\left(x-7\right)+4\left(x-7\right)
Beledigt x in de eerste en 4 in de tweede groep.
\left(x-7\right)\left(x+4\right)
Factoriseer de gemeenschappelijke term x-7 door gebruik te maken van distributieve eigenschap.
x^{2}-3x-28=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
Bereken de wortel van -3.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Vermenigvuldig -4 met -28.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
Tel 9 op bij 112.
x=\frac{-\left(-3\right)±11}{2}
Bereken de vierkantswortel van 121.
x=\frac{3±11}{2}
Het tegenovergestelde van -3 is 3.
x=\frac{14}{2}
Los nu de vergelijking x=\frac{3±11}{2} op als ± positief is. Tel 3 op bij 11.
x=7
Deel 14 door 2.
x=-\frac{8}{2}
Los nu de vergelijking x=\frac{3±11}{2} op als ± negatief is. Trek 11 af van 3.
x=-4
Deel -8 door 2.
x^{2}-3x-28=\left(x-7\right)\left(x-\left(-4\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door 7 en x_{2} door -4.
x^{2}-3x-28=\left(x-7\right)\left(x+4\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.