Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

x^{2}-3x-2-2=0
Trek aan beide kanten 2 af.
x^{2}-3x-4=0
Trek 2 af van -2 om -4 te krijgen.
a+b=-3 ab=-4
Als u de vergelijking wilt oplossen, x^{2}-3x-4 u formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) gebruiken. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-4 2,-2
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -4 geven weergeven.
1-4=-3 2-2=0
Bereken de som voor elk paar.
a=-4 b=1
De oplossing is het paar dat de som -3 geeft.
\left(x-4\right)\left(x+1\right)
Herschrijf factor-expressie \left(x+a\right)\left(x+b\right) de verkregen waarden gebruiken.
x=4 x=-1
Als u oplossingen voor vergelijkingen zoekt, lost u x-4=0 en x+1=0 op.
x^{2}-3x-2-2=0
Trek aan beide kanten 2 af.
x^{2}-3x-4=0
Trek 2 af van -2 om -4 te krijgen.
a+b=-3 ab=1\left(-4\right)=-4
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx-4. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,-4 2,-2
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Alle paren met gehele getallen die een product -4 geven weergeven.
1-4=-3 2-2=0
Bereken de som voor elk paar.
a=-4 b=1
De oplossing is het paar dat de som -3 geeft.
\left(x^{2}-4x\right)+\left(x-4\right)
Herschrijf x^{2}-3x-4 als \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Factoriseer xx^{2}-4x.
\left(x-4\right)\left(x+1\right)
Factoriseer de gemeenschappelijke term x-4 door gebruik te maken van distributieve eigenschap.
x=4 x=-1
Als u oplossingen voor vergelijkingen zoekt, lost u x-4=0 en x+1=0 op.
x^{2}-3x-2=2
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x^{2}-3x-2-2=2-2
Trek aan beide kanten van de vergelijking 2 af.
x^{2}-3x-2-2=0
Als u 2 aftrekt van zichzelf, is de uitkomst 0.
x^{2}-3x-4=0
Trek 2 af van -2.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, -3 voor b en -4 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
Bereken de wortel van -3.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
Vermenigvuldig -4 met -4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
Tel 9 op bij 16.
x=\frac{-\left(-3\right)±5}{2}
Bereken de vierkantswortel van 25.
x=\frac{3±5}{2}
Het tegenovergestelde van -3 is 3.
x=\frac{8}{2}
Los nu de vergelijking x=\frac{3±5}{2} op als ± positief is. Tel 3 op bij 5.
x=4
Deel 8 door 2.
x=-\frac{2}{2}
Los nu de vergelijking x=\frac{3±5}{2} op als ± negatief is. Trek 5 af van 3.
x=-1
Deel -2 door 2.
x=4 x=-1
De vergelijking is nu opgelost.
x^{2}-3x-2=2
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
x^{2}-3x-2-\left(-2\right)=2-\left(-2\right)
Tel aan beide kanten van de vergelijking 2 op.
x^{2}-3x=2-\left(-2\right)
Als u -2 aftrekt van zichzelf, is de uitkomst 0.
x^{2}-3x=4
Trek -2 af van 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Deel -3, de coëfficiënt van de x term door 2 om -\frac{3}{2} op te halen. Voeg vervolgens het kwadraat van -\frac{3}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Bereken de wortel van -\frac{3}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Tel 4 op bij \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Factoriseer x^{2}-3x+\frac{9}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Vereenvoudig.
x=4 x=-1
Tel aan beide kanten van de vergelijking \frac{3}{2} op.