Oplossen voor a
a=\frac{\sqrt{3}x^{2}}{4}
Oplossen voor x (complex solution)
x=-\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
x=\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
Oplossen voor x
x=\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}
x=-\frac{2\times 3^{\frac{3}{4}}\sqrt{a}}{3}\text{, }a\geq 0
Grafiek
Delen
Gekopieerd naar klembord
x^{2}=\frac{4a\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationaliseer de noemer van \frac{4a}{\sqrt{3}} door teller en noemer te vermenigvuldigen met \sqrt{3}.
x^{2}=\frac{4a\sqrt{3}}{3}
Het kwadraat van \sqrt{3} is 3.
\frac{4a\sqrt{3}}{3}=x^{2}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
4a\sqrt{3}=3x^{2}
Vermenigvuldig beide zijden van de vergelijking met 3.
4\sqrt{3}a=3x^{2}
De vergelijking heeft de standaardvorm.
\frac{4\sqrt{3}a}{4\sqrt{3}}=\frac{3x^{2}}{4\sqrt{3}}
Deel beide zijden van de vergelijking door 4\sqrt{3}.
a=\frac{3x^{2}}{4\sqrt{3}}
Delen door 4\sqrt{3} maakt de vermenigvuldiging met 4\sqrt{3} ongedaan.
a=\frac{\sqrt{3}x^{2}}{4}
Deel 3x^{2} door 4\sqrt{3}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}