Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=1 ab=-20
Als u de vergelijking wilt oplossen, x^{2}+x-20 u formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) gebruiken. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,20 -2,10 -4,5
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -20 geven weergeven.
-1+20=19 -2+10=8 -4+5=1
Bereken de som voor elk paar.
a=-4 b=5
De oplossing is het paar dat de som 1 geeft.
\left(x-4\right)\left(x+5\right)
Herschrijf factor-expressie \left(x+a\right)\left(x+b\right) de verkregen waarden gebruiken.
x=4 x=-5
Als u oplossingen voor vergelijkingen zoekt, lost u x-4=0 en x+5=0 op.
a+b=1 ab=1\left(-20\right)=-20
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx-20. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,20 -2,10 -4,5
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -20 geven weergeven.
-1+20=19 -2+10=8 -4+5=1
Bereken de som voor elk paar.
a=-4 b=5
De oplossing is het paar dat de som 1 geeft.
\left(x^{2}-4x\right)+\left(5x-20\right)
Herschrijf x^{2}+x-20 als \left(x^{2}-4x\right)+\left(5x-20\right).
x\left(x-4\right)+5\left(x-4\right)
Beledigt x in de eerste en 5 in de tweede groep.
\left(x-4\right)\left(x+5\right)
Factoriseer de gemeenschappelijke term x-4 door gebruik te maken van distributieve eigenschap.
x=4 x=-5
Als u oplossingen voor vergelijkingen zoekt, lost u x-4=0 en x+5=0 op.
x^{2}+x-20=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-1±\sqrt{1^{2}-4\left(-20\right)}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, 1 voor b en -20 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-20\right)}}{2}
Bereken de wortel van 1.
x=\frac{-1±\sqrt{1+80}}{2}
Vermenigvuldig -4 met -20.
x=\frac{-1±\sqrt{81}}{2}
Tel 1 op bij 80.
x=\frac{-1±9}{2}
Bereken de vierkantswortel van 81.
x=\frac{8}{2}
Los nu de vergelijking x=\frac{-1±9}{2} op als ± positief is. Tel -1 op bij 9.
x=4
Deel 8 door 2.
x=-\frac{10}{2}
Los nu de vergelijking x=\frac{-1±9}{2} op als ± negatief is. Trek 9 af van -1.
x=-5
Deel -10 door 2.
x=4 x=-5
De vergelijking is nu opgelost.
x^{2}+x-20=0
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
x^{2}+x-20-\left(-20\right)=-\left(-20\right)
Tel aan beide kanten van de vergelijking 20 op.
x^{2}+x=-\left(-20\right)
Als u -20 aftrekt van zichzelf, is de uitkomst 0.
x^{2}+x=20
Trek -20 af van 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=20+\left(\frac{1}{2}\right)^{2}
Deel 1, de coëfficiënt van de x term door 2 om \frac{1}{2} op te halen. Voeg vervolgens het kwadraat van \frac{1}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}+x+\frac{1}{4}=20+\frac{1}{4}
Bereken de wortel van \frac{1}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}+x+\frac{1}{4}=\frac{81}{4}
Tel 20 op bij \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{81}{4}
Factoriseer x^{2}+x+\frac{1}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+\frac{1}{2}=\frac{9}{2} x+\frac{1}{2}=-\frac{9}{2}
Vereenvoudig.
x=4 x=-5
Trek aan beide kanten van de vergelijking \frac{1}{2} af.