Factoriseren
\left(x-\frac{-3\sqrt{21}-13}{2}\right)\left(x-\frac{3\sqrt{21}-13}{2}\right)
Evalueren
x^{2}+13x-5
Grafiek
Delen
Gekopieerd naar klembord
factor(x^{2}+13x-5)
Combineer x en 12x om 13x te krijgen.
x^{2}+13x-5=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-13±\sqrt{13^{2}-4\left(-5\right)}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-13±\sqrt{169-4\left(-5\right)}}{2}
Bereken de wortel van 13.
x=\frac{-13±\sqrt{169+20}}{2}
Vermenigvuldig -4 met -5.
x=\frac{-13±\sqrt{189}}{2}
Tel 169 op bij 20.
x=\frac{-13±3\sqrt{21}}{2}
Bereken de vierkantswortel van 189.
x=\frac{3\sqrt{21}-13}{2}
Los nu de vergelijking x=\frac{-13±3\sqrt{21}}{2} op als ± positief is. Tel -13 op bij 3\sqrt{21}.
x=\frac{-3\sqrt{21}-13}{2}
Los nu de vergelijking x=\frac{-13±3\sqrt{21}}{2} op als ± negatief is. Trek 3\sqrt{21} af van -13.
x^{2}+13x-5=\left(x-\frac{3\sqrt{21}-13}{2}\right)\left(x-\frac{-3\sqrt{21}-13}{2}\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door \frac{-13+3\sqrt{21}}{2} en x_{2} door \frac{-13-3\sqrt{21}}{2}.
x^{2}+13x-5
Combineer x en 12x om 13x te krijgen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}