Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=4 ab=1\left(-32\right)=-32
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als x^{2}+ax+bx-32. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,32 -2,16 -4,8
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -32 geven weergeven.
-1+32=31 -2+16=14 -4+8=4
Bereken de som voor elk paar.
a=-4 b=8
De oplossing is het paar dat de som 4 geeft.
\left(x^{2}-4x\right)+\left(8x-32\right)
Herschrijf x^{2}+4x-32 als \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
Beledigt x in de eerste en 8 in de tweede groep.
\left(x-4\right)\left(x+8\right)
Factoriseer de gemeenschappelijke term x-4 door gebruik te maken van distributieve eigenschap.
x^{2}+4x-32=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
Bereken de wortel van 4.
x=\frac{-4±\sqrt{16+128}}{2}
Vermenigvuldig -4 met -32.
x=\frac{-4±\sqrt{144}}{2}
Tel 16 op bij 128.
x=\frac{-4±12}{2}
Bereken de vierkantswortel van 144.
x=\frac{8}{2}
Los nu de vergelijking x=\frac{-4±12}{2} op als ± positief is. Tel -4 op bij 12.
x=4
Deel 8 door 2.
x=-\frac{16}{2}
Los nu de vergelijking x=\frac{-4±12}{2} op als ± negatief is. Trek 12 af van -4.
x=-8
Deel -16 door 2.
x^{2}+4x-32=\left(x-4\right)\left(x-\left(-8\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door 4 en x_{2} door -8.
x^{2}+4x-32=\left(x-4\right)\left(x+8\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.