Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

x^{2}+3x+2=0
Voeg 2 toe aan beide zijden.
a+b=3 ab=2
Als u de vergelijking wilt oplossen, x^{2}+3x+2 u formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) gebruiken. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
a=1 b=2
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b positief is, zijn a en b positief. Het enige paar is de systeem oplossing.
\left(x+1\right)\left(x+2\right)
Herschrijf factor-expressie \left(x+a\right)\left(x+b\right) de verkregen waarden gebruiken.
x=-1 x=-2
Als u oplossingen voor vergelijkingen zoekt, lost u x+1=0 en x+2=0 op.
x^{2}+3x+2=0
Voeg 2 toe aan beide zijden.
a+b=3 ab=1\times 2=2
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx+2. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
a=1 b=2
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b positief is, zijn a en b positief. Het enige paar is de systeem oplossing.
\left(x^{2}+x\right)+\left(2x+2\right)
Herschrijf x^{2}+3x+2 als \left(x^{2}+x\right)+\left(2x+2\right).
x\left(x+1\right)+2\left(x+1\right)
Beledigt x in de eerste en 2 in de tweede groep.
\left(x+1\right)\left(x+2\right)
Factoriseer de gemeenschappelijke term x+1 door gebruik te maken van distributieve eigenschap.
x=-1 x=-2
Als u oplossingen voor vergelijkingen zoekt, lost u x+1=0 en x+2=0 op.
x^{2}+3x=-2
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x^{2}+3x-\left(-2\right)=-2-\left(-2\right)
Tel aan beide kanten van de vergelijking 2 op.
x^{2}+3x-\left(-2\right)=0
Als u -2 aftrekt van zichzelf, is de uitkomst 0.
x^{2}+3x+2=0
Trek -2 af van 0.
x=\frac{-3±\sqrt{3^{2}-4\times 2}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, 3 voor b en 2 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2}}{2}
Bereken de wortel van 3.
x=\frac{-3±\sqrt{9-8}}{2}
Vermenigvuldig -4 met 2.
x=\frac{-3±\sqrt{1}}{2}
Tel 9 op bij -8.
x=\frac{-3±1}{2}
Bereken de vierkantswortel van 1.
x=-\frac{2}{2}
Los nu de vergelijking x=\frac{-3±1}{2} op als ± positief is. Tel -3 op bij 1.
x=-1
Deel -2 door 2.
x=-\frac{4}{2}
Los nu de vergelijking x=\frac{-3±1}{2} op als ± negatief is. Trek 1 af van -3.
x=-2
Deel -4 door 2.
x=-1 x=-2
De vergelijking is nu opgelost.
x^{2}+3x=-2
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2+\left(\frac{3}{2}\right)^{2}
Deel 3, de coëfficiënt van de x term door 2 om \frac{3}{2} op te halen. Voeg vervolgens het kwadraat van \frac{3}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}+3x+\frac{9}{4}=-2+\frac{9}{4}
Bereken de wortel van \frac{3}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}+3x+\frac{9}{4}=\frac{1}{4}
Tel -2 op bij \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{1}{4}
Factoriseer x^{2}+3x+\frac{9}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+\frac{3}{2}=\frac{1}{2} x+\frac{3}{2}=-\frac{1}{2}
Vereenvoudig.
x=-1 x=-2
Trek aan beide kanten van de vergelijking \frac{3}{2} af.