Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

x\left(x+14\right)
Factoriseer x.
x^{2}+14x=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-14±\sqrt{14^{2}}}{2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-14±14}{2}
Bereken de vierkantswortel van 14^{2}.
x=\frac{0}{2}
Los nu de vergelijking x=\frac{-14±14}{2} op als ± positief is. Tel -14 op bij 14.
x=0
Deel 0 door 2.
x=-\frac{28}{2}
Los nu de vergelijking x=\frac{-14±14}{2} op als ± negatief is. Trek 14 af van -14.
x=-14
Deel -28 door 2.
x^{2}+14x=x\left(x-\left(-14\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door 0 en x_{2} door -14.
x^{2}+14x=x\left(x+14\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.