Factoriseren
\left(x-1\right)\left(x+1\right)x^{2}\left(x^{2}+1\right)\left(x^{4}+1\right)
Evalueren
x^{2}\left(x^{8}-1\right)
Grafiek
Delen
Gekopieerd naar klembord
x^{2}\left(x^{8}-1\right)
Factoriseer x^{2}.
\left(x^{4}-1\right)\left(x^{4}+1\right)
Houd rekening met x^{8}-1. Herschrijf x^{8}-1 als \left(x^{4}\right)^{2}-1^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
Houd rekening met x^{4}-1. Herschrijf x^{4}-1 als \left(x^{2}\right)^{2}-1^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
Houd rekening met x^{2}-1. Herschrijf x^{2}-1 als x^{2}-1^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x^{2}\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Herschrijf de volledige gefactoriseerde expressie. De volgende polynomen zijn niet gefactoriseerd omdat ze geen rationale wortels hebben: x^{2}+1,x^{4}+1.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}