Oplossen voor s
\left\{\begin{matrix}s=\frac{x}{w-c^{3}}\text{, }&w\neq c^{3}\\s\in \mathrm{R}\text{, }&x=0\text{ and }w=c^{3}\end{matrix}\right,
Oplossen voor c
\left\{\begin{matrix}c=\sqrt[3]{w-\frac{x}{s}}\text{, }&s\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }s=0\end{matrix}\right,
Grafiek
Delen
Gekopieerd naar klembord
sw-sc^{3}=x
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
-sc^{3}+sw=x
Rangschik de termen opnieuw.
\left(-c^{3}+w\right)s=x
Combineer alle termen met s.
\left(w-c^{3}\right)s=x
De vergelijking heeft de standaardvorm.
\frac{\left(w-c^{3}\right)s}{w-c^{3}}=\frac{x}{w-c^{3}}
Deel beide zijden van de vergelijking door w-c^{3}.
s=\frac{x}{w-c^{3}}
Delen door w-c^{3} maakt de vermenigvuldiging met w-c^{3} ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}