Factoriseren
\left(s-6\right)\left(s-1\right)
Evalueren
\left(s-6\right)\left(s-1\right)
Delen
Gekopieerd naar klembord
s^{2}-7s+6
Vermenigvuldig en combineer gelijke termen.
a+b=-7 ab=1\times 6=6
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als s^{2}+as+bs+6. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,-6 -2,-3
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b negatief is, zijn a en b negatief. Alle paren met gehele getallen die een product 6 geven weergeven.
-1-6=-7 -2-3=-5
Bereken de som voor elk paar.
a=-6 b=-1
De oplossing is het paar dat de som -7 geeft.
\left(s^{2}-6s\right)+\left(-s+6\right)
Herschrijf s^{2}-7s+6 als \left(s^{2}-6s\right)+\left(-s+6\right).
s\left(s-6\right)-\left(s-6\right)
Beledigt s in de eerste en -1 in de tweede groep.
\left(s-6\right)\left(s-1\right)
Factoriseer de gemeenschappelijke term s-6 door gebruik te maken van distributieve eigenschap.
s^{2}-7s+6
Combineer -6s en -s om -7s te krijgen.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}