Oplossen voor r
\left\{\begin{matrix}r=\frac{\sqrt[3]{5\left(x-4\right)}}{u_{1}}\text{, }&u_{1}\neq 0\\r\in \mathrm{R}\text{, }&x=4\text{ and }u_{1}=0\end{matrix}\right,
Oplossen voor u_1
\left\{\begin{matrix}u_{1}=\frac{\sqrt[3]{5\left(x-4\right)}}{r}\text{, }&r\neq 0\\u_{1}\in \mathrm{R}\text{, }&x=4\text{ and }r=0\end{matrix}\right,
Delen
Gekopieerd naar klembord
u_{1}r=\sqrt[3]{5x-20}
De vergelijking heeft de standaardvorm.
\frac{u_{1}r}{u_{1}}=\frac{\sqrt[3]{5x-20}}{u_{1}}
Deel beide zijden van de vergelijking door u_{1}.
r=\frac{\sqrt[3]{5x-20}}{u_{1}}
Delen door u_{1} maakt de vermenigvuldiging met u_{1} ongedaan.
ru_{1}=\sqrt[3]{5x-20}
De vergelijking heeft de standaardvorm.
\frac{ru_{1}}{r}=\frac{\sqrt[3]{5x-20}}{r}
Deel beide zijden van de vergelijking door r.
u_{1}=\frac{\sqrt[3]{5x-20}}{r}
Delen door r maakt de vermenigvuldiging met r ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}