Oplossen voor k
k=9\left(n-m\right)^{2}+1
3n-3m\geq 0
Oplossen voor m
m=n-\frac{\sqrt{k-1}}{3}
k\geq 1
Delen
Gekopieerd naar klembord
\frac{\sqrt{k-1}}{3}+m=n
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\frac{\sqrt{k-1}}{3}=n-m
Trek aan beide kanten m af.
\sqrt{k-1}=3n-3m
Vermenigvuldig beide zijden van de vergelijking met 3.
k-1=9\left(n-m\right)^{2}
Herleid de wortel aan beide kanten van de vergelijking.
k-1-\left(-1\right)=9\left(n-m\right)^{2}-\left(-1\right)
Tel aan beide kanten van de vergelijking 1 op.
k=9\left(n-m\right)^{2}-\left(-1\right)
Als u -1 aftrekt van zichzelf, is de uitkomst 0.
k=9\left(n-m\right)^{2}+1
Trek -1 af van 9\left(n-m\right)^{2}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}