Factoriseren
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
Evalueren
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
Delen
Gekopieerd naar klembord
\left(2a-3\right)\left(a^{2}+a-2\right)
Volgens de stelling over rationale wortels hebben alle rationale wortels van een polynoom de vorm \frac{p}{q}, waarbij p de constante term 6 deelt en q de leidende coëfficiënt 2 deelt. Een van deze wortels is \frac{3}{2}. Factoriseer de polynoom door deze te delen door 2a-3.
p+q=1 pq=1\left(-2\right)=-2
Houd rekening met a^{2}+a-2. Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als a^{2}+pa+qa-2. Als u p en q wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
p=-1 q=2
Omdat pq negatief is, p en q de tegenovergestelde tekens. Omdat p+q positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Het enige paar is de systeem oplossing.
\left(a^{2}-a\right)+\left(2a-2\right)
Herschrijf a^{2}+a-2 als \left(a^{2}-a\right)+\left(2a-2\right).
a\left(a-1\right)+2\left(a-1\right)
Beledigt a in de eerste en 2 in de tweede groep.
\left(a-1\right)\left(a+2\right)
Factoriseer de gemeenschappelijke term a-1 door gebruik te maken van distributieve eigenschap.
\left(2a-3\right)\left(a-1\right)\left(a+2\right)
Herschrijf de volledige gefactoriseerde expressie.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}