Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

\left(a^{3}-b^{3}\right)\left(a^{3}+b^{3}\right)
Herschrijf a^{6}-b^{6} als \left(a^{3}\right)^{2}-\left(b^{3}\right)^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a^{2}+ab+b^{2}\right)
Houd rekening met a^{3}-b^{3}. Het verschil tussen kubussen kan worden vermenigvuldigd met behulp van de regel: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a+b\right)\left(a^{2}-ab+b^{2}\right)
Houd rekening met a^{3}+b^{3}. De som van kubussen kan worden vermenigvuldigd met behulp van de regel: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a-b\right)\left(a+b\right)\left(a^{2}-ab+b^{2}\right)\left(a^{2}+ab+b^{2}\right)
Herschrijf de volledige gefactoriseerde expressie.