Oplossen voor a
a=4
a=0
Delen
Gekopieerd naar klembord
a^{2}-4a=0
Trek aan beide kanten 4a af.
a\left(a-4\right)=0
Factoriseer a.
a=0 a=4
Als u oplossingen voor vergelijkingen zoekt, lost u a=0 en a-4=0 op.
a^{2}-4a=0
Trek aan beide kanten 4a af.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, -4 voor b en 0 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±4}{2}
Bereken de vierkantswortel van \left(-4\right)^{2}.
a=\frac{4±4}{2}
Het tegenovergestelde van -4 is 4.
a=\frac{8}{2}
Los nu de vergelijking a=\frac{4±4}{2} op als ± positief is. Tel 4 op bij 4.
a=4
Deel 8 door 2.
a=\frac{0}{2}
Los nu de vergelijking a=\frac{4±4}{2} op als ± negatief is. Trek 4 af van 4.
a=0
Deel 0 door 2.
a=4 a=0
De vergelijking is nu opgelost.
a^{2}-4a=0
Trek aan beide kanten 4a af.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
Deel -4, de coëfficiënt van de x term door 2 om -2 op te halen. Voeg vervolgens het kwadraat van -2 toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
a^{2}-4a+4=4
Bereken de wortel van -2.
\left(a-2\right)^{2}=4
Factoriseer a^{2}-4a+4. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Neem de vierkantswortel van beide zijden van de vergelijking.
a-2=2 a-2=-2
Vereenvoudig.
a=4 a=0
Tel aan beide kanten van de vergelijking 2 op.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}