Oplossen voor P_m (complex solution)
\left\{\begin{matrix}P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\\P_{m}\in \mathrm{C}\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\right)\text{ and }V_{s}=0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\end{matrix}\right,
Oplossen voor P_m
\left\{\begin{matrix}P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\\P_{m}\in \mathrm{R}\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\right)\text{ and }V_{s}=0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\end{matrix}\right,
Oplossen voor P_s
\left\{\begin{matrix}P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{m}\neq 0\text{ and }T_{m}\neq 0\text{ and }V_{s}\neq 0\\P_{s}\neq 0\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\text{ or }P_{m}=0\right)\text{ and }V_{s}=0\text{ and }T_{m}\neq 0\end{matrix}\right,
Delen
Gekopieerd naar klembord
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Vermenigvuldig beide zijden van de vergelijking met P_{s}T_{m}.
P_{m}V_{m}T_{s}=V_{s}P_{s}T_{m}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
T_{s}V_{m}P_{m}=P_{s}T_{m}V_{s}
De vergelijking heeft de standaardvorm.
\frac{T_{s}V_{m}P_{m}}{T_{s}V_{m}}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Deel beide zijden van de vergelijking door V_{m}T_{s}.
P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Delen door V_{m}T_{s} maakt de vermenigvuldiging met V_{m}T_{s} ongedaan.
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Vermenigvuldig beide zijden van de vergelijking met P_{s}T_{m}.
P_{m}V_{m}T_{s}=V_{s}P_{s}T_{m}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
T_{s}V_{m}P_{m}=P_{s}T_{m}V_{s}
De vergelijking heeft de standaardvorm.
\frac{T_{s}V_{m}P_{m}}{T_{s}V_{m}}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Deel beide zijden van de vergelijking door V_{m}T_{s}.
P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Delen door V_{m}T_{s} maakt de vermenigvuldiging met V_{m}T_{s} ongedaan.
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Variabele P_{s} kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met P_{s}T_{m}.
P_{s}T_{m}V_{s}=P_{m}T_{s}V_{m}
Rangschik de termen opnieuw.
T_{m}V_{s}P_{s}=P_{m}T_{s}V_{m}
De vergelijking heeft de standaardvorm.
\frac{T_{m}V_{s}P_{s}}{T_{m}V_{s}}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}
Deel beide zijden van de vergelijking door V_{s}T_{m}.
P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}
Delen door V_{s}T_{m} maakt de vermenigvuldiging met V_{s}T_{m} ongedaan.
P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}\text{, }P_{s}\neq 0
Variabele P_{s} kan niet gelijk zijn aan 0.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}