Oplossen voor R_1
\left\{\begin{matrix}R_{1}=\frac{R_{2}\left(V_{2}-V_{1}\right)}{V_{0}}\text{, }&V_{2}\neq V_{1}\text{ and }R_{2}\neq 0\text{ and }V_{0}\neq 0\\R_{1}\neq 0\text{, }&\left(V_{2}=V_{1}\text{ or }R_{2}=0\right)\text{ and }V_{0}=0\end{matrix}\right,
Oplossen voor R_2
\left\{\begin{matrix}R_{2}=\frac{R_{1}V_{0}}{V_{2}-V_{1}}\text{, }&V_{2}\neq V_{1}\text{ and }R_{1}\neq 0\\R_{2}\in \mathrm{R}\text{, }&V_{0}=0\text{ and }V_{2}=V_{1}\text{ and }R_{1}\neq 0\end{matrix}\right,
Delen
Gekopieerd naar klembord
V_{0}R_{1}=\left(V_{2}-V_{1}\right)R_{2}
Variabele R_{1} kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met R_{1}.
V_{0}R_{1}=V_{2}R_{2}-V_{1}R_{2}
Gebruik de distributieve eigenschap om V_{2}-V_{1} te vermenigvuldigen met R_{2}.
V_{0}R_{1}=R_{2}V_{2}-R_{2}V_{1}
De vergelijking heeft de standaardvorm.
\frac{V_{0}R_{1}}{V_{0}}=\frac{R_{2}\left(V_{2}-V_{1}\right)}{V_{0}}
Deel beide zijden van de vergelijking door V_{0}.
R_{1}=\frac{R_{2}\left(V_{2}-V_{1}\right)}{V_{0}}
Delen door V_{0} maakt de vermenigvuldiging met V_{0} ongedaan.
R_{1}=\frac{R_{2}\left(V_{2}-V_{1}\right)}{V_{0}}\text{, }R_{1}\neq 0
Variabele R_{1} kan niet gelijk zijn aan 0.
V_{0}R_{1}=\left(V_{2}-V_{1}\right)R_{2}
Vermenigvuldig beide zijden van de vergelijking met R_{1}.
V_{0}R_{1}=V_{2}R_{2}-V_{1}R_{2}
Gebruik de distributieve eigenschap om V_{2}-V_{1} te vermenigvuldigen met R_{2}.
V_{2}R_{2}-V_{1}R_{2}=V_{0}R_{1}
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\left(V_{2}-V_{1}\right)R_{2}=V_{0}R_{1}
Combineer alle termen met R_{2}.
\left(V_{2}-V_{1}\right)R_{2}=R_{1}V_{0}
De vergelijking heeft de standaardvorm.
\frac{\left(V_{2}-V_{1}\right)R_{2}}{V_{2}-V_{1}}=\frac{R_{1}V_{0}}{V_{2}-V_{1}}
Deel beide zijden van de vergelijking door V_{2}-V_{1}.
R_{2}=\frac{R_{1}V_{0}}{V_{2}-V_{1}}
Delen door V_{2}-V_{1} maakt de vermenigvuldiging met V_{2}-V_{1} ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}