Oplossen voor A
\left\{\begin{matrix}A=\frac{N}{R\sigma }\text{, }&N\neq 0\text{ and }\sigma \neq 0\text{ and }R\neq 0\\A\neq 0\text{, }&R=0\text{ and }N=0\text{ and }\sigma \neq 0\end{matrix}\right,
Oplossen voor N
N=AR\sigma
\sigma \neq 0\text{ and }A\neq 0
Delen
Gekopieerd naar klembord
RA\sigma =N
Variabele A kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met A\sigma .
AR\sigma =N
Rangschik de termen opnieuw.
R\sigma A=N
De vergelijking heeft de standaardvorm.
\frac{R\sigma A}{R\sigma }=\frac{N}{R\sigma }
Deel beide zijden van de vergelijking door R\sigma .
A=\frac{N}{R\sigma }
Delen door R\sigma maakt de vermenigvuldiging met R\sigma ongedaan.
A=\frac{N}{R\sigma }\text{, }A\neq 0
Variabele A kan niet gelijk zijn aan 0.
RA\sigma =N
Vermenigvuldig beide zijden van de vergelijking met A\sigma .
N=RA\sigma
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}