Overslaan en naar de inhoud gaan
Oplossen voor n
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

9n^{2}+10-91=0
Trek aan beide kanten 91 af.
9n^{2}-81=0
Trek 91 af van 10 om -81 te krijgen.
n^{2}-9=0
Deel beide zijden van de vergelijking door 9.
\left(n-3\right)\left(n+3\right)=0
Houd rekening met n^{2}-9. Herschrijf n^{2}-9 als n^{2}-3^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=3 n=-3
Als u oplossingen voor vergelijkingen zoekt, lost u n-3=0 en n+3=0 op.
9n^{2}=91-10
Trek aan beide kanten 10 af.
9n^{2}=81
Trek 10 af van 91 om 81 te krijgen.
n^{2}=\frac{81}{9}
Deel beide zijden van de vergelijking door 9.
n^{2}=9
Deel 81 door 9 om 9 te krijgen.
n=3 n=-3
Neem de vierkantswortel van beide zijden van de vergelijking.
9n^{2}+10-91=0
Trek aan beide kanten 91 af.
9n^{2}-81=0
Trek 91 af van 10 om -81 te krijgen.
n=\frac{0±\sqrt{0^{2}-4\times 9\left(-81\right)}}{2\times 9}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 9 voor a, 0 voor b en -81 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 9\left(-81\right)}}{2\times 9}
Bereken de wortel van 0.
n=\frac{0±\sqrt{-36\left(-81\right)}}{2\times 9}
Vermenigvuldig -4 met 9.
n=\frac{0±\sqrt{2916}}{2\times 9}
Vermenigvuldig -36 met -81.
n=\frac{0±54}{2\times 9}
Bereken de vierkantswortel van 2916.
n=\frac{0±54}{18}
Vermenigvuldig 2 met 9.
n=3
Los nu de vergelijking n=\frac{0±54}{18} op als ± positief is. Deel 54 door 18.
n=-3
Los nu de vergelijking n=\frac{0±54}{18} op als ± negatief is. Deel -54 door 18.
n=3 n=-3
De vergelijking is nu opgelost.