Factoriseren
7\left(z-1\right)\left(z+3\right)z^{3}
Evalueren
7\left(z-1\right)\left(z+3\right)z^{3}
Delen
Gekopieerd naar klembord
7\left(z^{5}+2z^{4}-3z^{3}\right)
Factoriseer 7.
z^{3}\left(z^{2}+2z-3\right)
Houd rekening met z^{5}+2z^{4}-3z^{3}. Factoriseer z^{3}.
a+b=2 ab=1\left(-3\right)=-3
Houd rekening met z^{2}+2z-3. Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als z^{2}+az+bz-3. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
a=-1 b=3
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Het enige paar is de systeem oplossing.
\left(z^{2}-z\right)+\left(3z-3\right)
Herschrijf z^{2}+2z-3 als \left(z^{2}-z\right)+\left(3z-3\right).
z\left(z-1\right)+3\left(z-1\right)
Beledigt z in de eerste en 3 in de tweede groep.
\left(z-1\right)\left(z+3\right)
Factoriseer de gemeenschappelijke term z-1 door gebruik te maken van distributieve eigenschap.
7z^{3}\left(z-1\right)\left(z+3\right)
Herschrijf de volledige gefactoriseerde expressie.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}