Overslaan en naar de inhoud gaan
Oplossen voor x (complex solution)
Tick mark Image
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Volgens de stelling over rationale wortels hebben alle rationale wortels van een polynoom de vorm \frac{p}{q}, waarbij p de constante term 729 deelt en q de leidende coëfficiënt 64 deelt. Alle kandidaten \frac{p}{q} weergeven.
x=-\frac{9}{4}
Zoek één wortel door alle gehele getallen te proberen, van de kleinste waarde naar de absolute waarde. Als er geen gehele getallen zijn gevonden, probeert u breuken.
16x^{2}-36x+81=0
Met factor Theorem is x-k een factor van de polynoom voor elke hoofd k. Deel 64x^{3}+729 door 4\left(x+\frac{9}{4}\right)=4x+9 om 16x^{2}-36x+81 te krijgen. De vergelijking oplossen waar het resultaat gelijk is aan 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Alle vergelijkingen met de notatie ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Vervang a door 16, b door -36 en c door 81 in de kwadratische formule.
x=\frac{36±\sqrt{-3888}}{32}
Voer de berekeningen uit.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
De vergelijking 16x^{2}-36x+81=0 oplossen wanneer ± plus en ± minteken is.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Vermeld alle gevonden oplossingen.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Volgens de stelling over rationale wortels hebben alle rationale wortels van een polynoom de vorm \frac{p}{q}, waarbij p de constante term 729 deelt en q de leidende coëfficiënt 64 deelt. Alle kandidaten \frac{p}{q} weergeven.
x=-\frac{9}{4}
Zoek één wortel door alle gehele getallen te proberen, van de kleinste waarde naar de absolute waarde. Als er geen gehele getallen zijn gevonden, probeert u breuken.
16x^{2}-36x+81=0
Met factor Theorem is x-k een factor van de polynoom voor elke hoofd k. Deel 64x^{3}+729 door 4\left(x+\frac{9}{4}\right)=4x+9 om 16x^{2}-36x+81 te krijgen. De vergelijking oplossen waar het resultaat gelijk is aan 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Alle vergelijkingen met de notatie ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Vervang a door 16, b door -36 en c door 81 in de kwadratische formule.
x=\frac{36±\sqrt{-3888}}{32}
Voer de berekeningen uit.
x\in \emptyset
Er zijn geen oplossingen, omdat de vierkantswortel van een negatief getal niet is gedefinieerd in het reëele veld.
x=-\frac{9}{4}
Vermeld alle gevonden oplossingen.