Oplossen voor x
x=-\frac{1}{2}=-0,5
x=\frac{1}{3}\approx 0,333333333
Grafiek
Delen
Gekopieerd naar klembord
6x^{2}-1=-x
Trek aan beide kanten 1 af.
6x^{2}-1+x=0
Voeg x toe aan beide zijden.
6x^{2}+x-1=0
Rangschik de polynoom om deze de standaardvorm te geven. Rangschik de termen van de hoogste naar de laagste macht.
a+b=1 ab=6\left(-1\right)=-6
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als 6x^{2}+ax+bx-1. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,6 -2,3
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -6 geven weergeven.
-1+6=5 -2+3=1
Bereken de som voor elk paar.
a=-2 b=3
De oplossing is het paar dat de som 1 geeft.
\left(6x^{2}-2x\right)+\left(3x-1\right)
Herschrijf 6x^{2}+x-1 als \left(6x^{2}-2x\right)+\left(3x-1\right).
2x\left(3x-1\right)+3x-1
Factoriseer 2x6x^{2}-2x.
\left(3x-1\right)\left(2x+1\right)
Factoriseer de gemeenschappelijke term 3x-1 door gebruik te maken van distributieve eigenschap.
x=\frac{1}{3} x=-\frac{1}{2}
Als u oplossingen voor vergelijkingen zoekt, lost u 3x-1=0 en 2x+1=0 op.
6x^{2}-1=-x
Trek aan beide kanten 1 af.
6x^{2}-1+x=0
Voeg x toe aan beide zijden.
6x^{2}+x-1=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-1\right)}}{2\times 6}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 6 voor a, 1 voor b en -1 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
Bereken de wortel van 1.
x=\frac{-1±\sqrt{1-24\left(-1\right)}}{2\times 6}
Vermenigvuldig -4 met 6.
x=\frac{-1±\sqrt{1+24}}{2\times 6}
Vermenigvuldig -24 met -1.
x=\frac{-1±\sqrt{25}}{2\times 6}
Tel 1 op bij 24.
x=\frac{-1±5}{2\times 6}
Bereken de vierkantswortel van 25.
x=\frac{-1±5}{12}
Vermenigvuldig 2 met 6.
x=\frac{4}{12}
Los nu de vergelijking x=\frac{-1±5}{12} op als ± positief is. Tel -1 op bij 5.
x=\frac{1}{3}
Vereenvoudig de breuk \frac{4}{12} tot de kleinste termen door 4 af te trekken en weg te strepen.
x=-\frac{6}{12}
Los nu de vergelijking x=\frac{-1±5}{12} op als ± negatief is. Trek 5 af van -1.
x=-\frac{1}{2}
Vereenvoudig de breuk \frac{-6}{12} tot de kleinste termen door 6 af te trekken en weg te strepen.
x=\frac{1}{3} x=-\frac{1}{2}
De vergelijking is nu opgelost.
6x^{2}+x=1
Voeg x toe aan beide zijden.
\frac{6x^{2}+x}{6}=\frac{1}{6}
Deel beide zijden van de vergelijking door 6.
x^{2}+\frac{1}{6}x=\frac{1}{6}
Delen door 6 maakt de vermenigvuldiging met 6 ongedaan.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{1}{6}+\left(\frac{1}{12}\right)^{2}
Deel \frac{1}{6}, de coëfficiënt van de x term door 2 om \frac{1}{12} op te halen. Voeg vervolgens het kwadraat van \frac{1}{12} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{6}+\frac{1}{144}
Bereken de wortel van \frac{1}{12} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{25}{144}
Tel \frac{1}{6} op bij \frac{1}{144} door een gemeenschappelijke noemer te bepalen en de tellers op te tellen. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
\left(x+\frac{1}{12}\right)^{2}=\frac{25}{144}
Factoriseer x^{2}+\frac{1}{6}x+\frac{1}{144}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+\frac{1}{12}=\frac{5}{12} x+\frac{1}{12}=-\frac{5}{12}
Vereenvoudig.
x=\frac{1}{3} x=-\frac{1}{2}
Trek aan beide kanten van de vergelijking \frac{1}{12} af.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}