Oplossen voor x_15
\left\{\begin{matrix}x_{15}=\frac{yz_{5}}{z^{2}}\text{, }&z\neq 0\\x_{15}\in \mathrm{R}\text{, }&\left(z_{5}=0\text{ or }y=0\right)\text{ and }z=0\end{matrix}\right,
Oplossen voor y
\left\{\begin{matrix}y=\frac{x_{15}z^{2}}{z_{5}}\text{, }&z_{5}\neq 0\\y\in \mathrm{R}\text{, }&\left(x_{15}=0\text{ or }z=0\right)\text{ and }z_{5}=0\end{matrix}\right,
Delen
Gekopieerd naar klembord
z_{5}y=x_{15}z^{2}
5 aan beide zijden tegen elkaar wegstrepen.
x_{15}z^{2}=z_{5}y
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
z^{2}x_{15}=yz_{5}
De vergelijking heeft de standaardvorm.
\frac{z^{2}x_{15}}{z^{2}}=\frac{yz_{5}}{z^{2}}
Deel beide zijden van de vergelijking door z^{2}.
x_{15}=\frac{yz_{5}}{z^{2}}
Delen door z^{2} maakt de vermenigvuldiging met z^{2} ongedaan.
z_{5}y=x_{15}z^{2}
5 aan beide zijden tegen elkaar wegstrepen.
\frac{z_{5}y}{z_{5}}=\frac{x_{15}z^{2}}{z_{5}}
Deel beide zijden van de vergelijking door z_{5}.
y=\frac{x_{15}z^{2}}{z_{5}}
Delen door z_{5} maakt de vermenigvuldiging met z_{5} ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}