Oplossen voor x
x=\frac{3iy}{5}+\left(-7+\frac{21}{5}i\right)
Oplossen voor y
y=-\frac{5ix}{3}+\left(-7-\frac{35}{3}i\right)
Delen
Gekopieerd naar klembord
5x-3iy=-35+21i
Vermenigvuldig 3 en i om 3i te krijgen.
5x=-35+21i+3iy
Voeg 3iy toe aan beide zijden.
5x=3iy+\left(-35+21i\right)
De vergelijking heeft de standaardvorm.
\frac{5x}{5}=\frac{3iy+\left(-35+21i\right)}{5}
Deel beide zijden van de vergelijking door 5.
x=\frac{3iy+\left(-35+21i\right)}{5}
Delen door 5 maakt de vermenigvuldiging met 5 ongedaan.
x=\frac{3iy}{5}+\left(-7+\frac{21}{5}i\right)
Deel -35+21i+3iy door 5.
5x-3iy=-35+21i
Vermenigvuldig 3 en i om 3i te krijgen.
-3iy=-35+21i-5x
Trek aan beide kanten 5x af.
\frac{-3iy}{-3i}=\frac{-35+21i-5x}{-3i}
Deel beide zijden van de vergelijking door -3i.
y=\frac{-35+21i-5x}{-3i}
Delen door -3i maakt de vermenigvuldiging met -3i ongedaan.
y=-\frac{5ix}{3}+\left(-7-\frac{35}{3}i\right)
Deel -35+21i-5x door -3i.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}