Oplossen voor x
x=-1
x=3
Grafiek
Delen
Gekopieerd naar klembord
x^{2}-2x-3=0
Deel beide zijden van de vergelijking door 5.
a+b=-2 ab=1\left(-3\right)=-3
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx-3. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
a=-3 b=1
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b negatief is, heeft het negatieve getal een grotere absolute waarde dan de positieve. Het enige paar is de systeem oplossing.
\left(x^{2}-3x\right)+\left(x-3\right)
Herschrijf x^{2}-2x-3 als \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Factoriseer xx^{2}-3x.
\left(x-3\right)\left(x+1\right)
Factoriseer de gemeenschappelijke term x-3 door gebruik te maken van distributieve eigenschap.
x=3 x=-1
Als u oplossingen voor vergelijkingen zoekt, lost u x-3=0 en x+1=0 op.
5x^{2}-10x-15=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 5 voor a, -10 voor b en -15 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
Bereken de wortel van -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-15\right)}}{2\times 5}
Vermenigvuldig -4 met 5.
x=\frac{-\left(-10\right)±\sqrt{100+300}}{2\times 5}
Vermenigvuldig -20 met -15.
x=\frac{-\left(-10\right)±\sqrt{400}}{2\times 5}
Tel 100 op bij 300.
x=\frac{-\left(-10\right)±20}{2\times 5}
Bereken de vierkantswortel van 400.
x=\frac{10±20}{2\times 5}
Het tegenovergestelde van -10 is 10.
x=\frac{10±20}{10}
Vermenigvuldig 2 met 5.
x=\frac{30}{10}
Los nu de vergelijking x=\frac{10±20}{10} op als ± positief is. Tel 10 op bij 20.
x=3
Deel 30 door 10.
x=-\frac{10}{10}
Los nu de vergelijking x=\frac{10±20}{10} op als ± negatief is. Trek 20 af van 10.
x=-1
Deel -10 door 10.
x=3 x=-1
De vergelijking is nu opgelost.
5x^{2}-10x-15=0
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
5x^{2}-10x-15-\left(-15\right)=-\left(-15\right)
Tel aan beide kanten van de vergelijking 15 op.
5x^{2}-10x=-\left(-15\right)
Als u -15 aftrekt van zichzelf, is de uitkomst 0.
5x^{2}-10x=15
Trek -15 af van 0.
\frac{5x^{2}-10x}{5}=\frac{15}{5}
Deel beide zijden van de vergelijking door 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{15}{5}
Delen door 5 maakt de vermenigvuldiging met 5 ongedaan.
x^{2}-2x=\frac{15}{5}
Deel -10 door 5.
x^{2}-2x=3
Deel 15 door 5.
x^{2}-2x+1=3+1
Deel -2, de coëfficiënt van de x term door 2 om -1 op te halen. Voeg vervolgens het kwadraat van -1 toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}-2x+1=4
Tel 3 op bij 1.
\left(x-1\right)^{2}=4
Factoriseer x^{2}-2x+1. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Neem de vierkantswortel van beide zijden van de vergelijking.
x-1=2 x-1=-2
Vereenvoudig.
x=3 x=-1
Tel aan beide kanten van de vergelijking 1 op.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}