Oplossen voor z
z = \frac{5 \sqrt{41} - 15}{2} \approx 8,507810594
z=\frac{-5\sqrt{41}-15}{2}\approx -23,507810594
Delen
Gekopieerd naar klembord
4z^{2}+60z=800
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
4z^{2}+60z-800=800-800
Trek aan beide kanten van de vergelijking 800 af.
4z^{2}+60z-800=0
Als u 800 aftrekt van zichzelf, is de uitkomst 0.
z=\frac{-60±\sqrt{60^{2}-4\times 4\left(-800\right)}}{2\times 4}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 4 voor a, 60 voor b en -800 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-60±\sqrt{3600-4\times 4\left(-800\right)}}{2\times 4}
Bereken de wortel van 60.
z=\frac{-60±\sqrt{3600-16\left(-800\right)}}{2\times 4}
Vermenigvuldig -4 met 4.
z=\frac{-60±\sqrt{3600+12800}}{2\times 4}
Vermenigvuldig -16 met -800.
z=\frac{-60±\sqrt{16400}}{2\times 4}
Tel 3600 op bij 12800.
z=\frac{-60±20\sqrt{41}}{2\times 4}
Bereken de vierkantswortel van 16400.
z=\frac{-60±20\sqrt{41}}{8}
Vermenigvuldig 2 met 4.
z=\frac{20\sqrt{41}-60}{8}
Los nu de vergelijking z=\frac{-60±20\sqrt{41}}{8} op als ± positief is. Tel -60 op bij 20\sqrt{41}.
z=\frac{5\sqrt{41}-15}{2}
Deel -60+20\sqrt{41} door 8.
z=\frac{-20\sqrt{41}-60}{8}
Los nu de vergelijking z=\frac{-60±20\sqrt{41}}{8} op als ± negatief is. Trek 20\sqrt{41} af van -60.
z=\frac{-5\sqrt{41}-15}{2}
Deel -60-20\sqrt{41} door 8.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
De vergelijking is nu opgelost.
4z^{2}+60z=800
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
\frac{4z^{2}+60z}{4}=\frac{800}{4}
Deel beide zijden van de vergelijking door 4.
z^{2}+\frac{60}{4}z=\frac{800}{4}
Delen door 4 maakt de vermenigvuldiging met 4 ongedaan.
z^{2}+15z=\frac{800}{4}
Deel 60 door 4.
z^{2}+15z=200
Deel 800 door 4.
z^{2}+15z+\left(\frac{15}{2}\right)^{2}=200+\left(\frac{15}{2}\right)^{2}
Deel 15, de coëfficiënt van de x term door 2 om \frac{15}{2} op te halen. Voeg vervolgens het kwadraat van \frac{15}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
z^{2}+15z+\frac{225}{4}=200+\frac{225}{4}
Bereken de wortel van \frac{15}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
z^{2}+15z+\frac{225}{4}=\frac{1025}{4}
Tel 200 op bij \frac{225}{4}.
\left(z+\frac{15}{2}\right)^{2}=\frac{1025}{4}
Factoriseer z^{2}+15z+\frac{225}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1025}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
z+\frac{15}{2}=\frac{5\sqrt{41}}{2} z+\frac{15}{2}=-\frac{5\sqrt{41}}{2}
Vereenvoudig.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Trek aan beide kanten van de vergelijking \frac{15}{2} af.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}