Oplossen voor x (complex solution)
x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0,901387819+0,433012702i
x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0,901387819-0,433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0,901387819-0,433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0,901387819+0,433012702i
Grafiek
Delen
Gekopieerd naar klembord
4x^{4}+4=5x^{2}
Gebruik de distributieve eigenschap om 4 te vermenigvuldigen met x^{4}+1.
4x^{4}+4-5x^{2}=0
Trek aan beide kanten 5x^{2} af.
4t^{2}-5t+4=0
Vervang t voor x^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 4}}{2\times 4}
Alle vergelijkingen met de notatie ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Vervang a door 4, b door -5 en c door 4 in de kwadratische formule.
t=\frac{5±\sqrt{-39}}{8}
Voer de berekeningen uit.
t=\frac{5+\sqrt{39}i}{8} t=\frac{-\sqrt{39}i+5}{8}
De vergelijking t=\frac{5±\sqrt{-39}}{8} oplossen wanneer ± plus en ± minteken is.
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}} x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}
Sinds x=t^{2} worden de oplossingen verkregen door x=±\sqrt{t} voor elke t te evalueren.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}