Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

3x^{2}-x-5=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-5\right)}}{2\times 3}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-5\right)}}{2\times 3}
Vermenigvuldig -4 met 3.
x=\frac{-\left(-1\right)±\sqrt{1+60}}{2\times 3}
Vermenigvuldig -12 met -5.
x=\frac{-\left(-1\right)±\sqrt{61}}{2\times 3}
Tel 1 op bij 60.
x=\frac{1±\sqrt{61}}{2\times 3}
Het tegenovergestelde van -1 is 1.
x=\frac{1±\sqrt{61}}{6}
Vermenigvuldig 2 met 3.
x=\frac{\sqrt{61}+1}{6}
Los nu de vergelijking x=\frac{1±\sqrt{61}}{6} op als ± positief is. Tel 1 op bij \sqrt{61}.
x=\frac{1-\sqrt{61}}{6}
Los nu de vergelijking x=\frac{1±\sqrt{61}}{6} op als ± negatief is. Trek \sqrt{61} af van 1.
3x^{2}-x-5=3\left(x-\frac{\sqrt{61}+1}{6}\right)\left(x-\frac{1-\sqrt{61}}{6}\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door \frac{1+\sqrt{61}}{6} en x_{2} door \frac{1-\sqrt{61}}{6}.