Factoriseren
\left(z-10\right)\left(2z-3\right)
Evalueren
\left(z-10\right)\left(2z-3\right)
Delen
Gekopieerd naar klembord
a+b=-23 ab=2\times 30=60
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als 2z^{2}+az+bz+30. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b negatief is, zijn a en b negatief. Alle paren met gehele getallen die een product 60 geven weergeven.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Bereken de som voor elk paar.
a=-20 b=-3
De oplossing is het paar dat de som -23 geeft.
\left(2z^{2}-20z\right)+\left(-3z+30\right)
Herschrijf 2z^{2}-23z+30 als \left(2z^{2}-20z\right)+\left(-3z+30\right).
2z\left(z-10\right)-3\left(z-10\right)
Beledigt 2z in de eerste en -3 in de tweede groep.
\left(z-10\right)\left(2z-3\right)
Factoriseer de gemeenschappelijke term z-10 door gebruik te maken van distributieve eigenschap.
2z^{2}-23z+30=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
z=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 2\times 30}}{2\times 2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
z=\frac{-\left(-23\right)±\sqrt{529-4\times 2\times 30}}{2\times 2}
Bereken de wortel van -23.
z=\frac{-\left(-23\right)±\sqrt{529-8\times 30}}{2\times 2}
Vermenigvuldig -4 met 2.
z=\frac{-\left(-23\right)±\sqrt{529-240}}{2\times 2}
Vermenigvuldig -8 met 30.
z=\frac{-\left(-23\right)±\sqrt{289}}{2\times 2}
Tel 529 op bij -240.
z=\frac{-\left(-23\right)±17}{2\times 2}
Bereken de vierkantswortel van 289.
z=\frac{23±17}{2\times 2}
Het tegenovergestelde van -23 is 23.
z=\frac{23±17}{4}
Vermenigvuldig 2 met 2.
z=\frac{40}{4}
Los nu de vergelijking z=\frac{23±17}{4} op als ± positief is. Tel 23 op bij 17.
z=10
Deel 40 door 4.
z=\frac{6}{4}
Los nu de vergelijking z=\frac{23±17}{4} op als ± negatief is. Trek 17 af van 23.
z=\frac{3}{2}
Vereenvoudig de breuk \frac{6}{4} tot de kleinste termen door 2 af te trekken en weg te strepen.
2z^{2}-23z+30=2\left(z-10\right)\left(z-\frac{3}{2}\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door 10 en x_{2} door \frac{3}{2}.
2z^{2}-23z+30=2\left(z-10\right)\times \frac{2z-3}{2}
Trek \frac{3}{2} af van z door een gemeenschappelijke noemer te bepalen en de tellers af te trekken. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
2z^{2}-23z+30=\left(z-10\right)\left(2z-3\right)
Streep de grootste gemene deler 2 in 2 en 2 tegen elkaar weg.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}