Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

2x-2x^{2}+1-x<0
Gebruik de distributieve eigenschap om 2x te vermenigvuldigen met 1-x.
x-2x^{2}+1<0
Combineer 2x en -x om x te krijgen.
-x+2x^{2}-1>0
Vermenigvuldig de ongelijkheid met-1 om de coëfficiënt van de hoogste macht in x-2x^{2}+1 positief te maken. Omdat -1 negatief is, wordt de richting van de ongelijkheid gewijzigd.
-x+2x^{2}-1=0
Als u de ongelijkheid wilt oplossen, factoriseert u de linkerkant. Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Alle vergelijkingen met de notatie ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Vervang a door 2, b door -1 en c door -1 in de kwadratische formule.
x=\frac{1±3}{4}
Voer de berekeningen uit.
x=1 x=-\frac{1}{2}
De vergelijking x=\frac{1±3}{4} oplossen wanneer ± plus en ± minteken is.
2\left(x-1\right)\left(x+\frac{1}{2}\right)>0
Herschrijf de ongelijkheid met behulp van de verkregen oplossingen.
x-1<0 x+\frac{1}{2}<0
Als het product positief moet zijn, moeten x-1 en x+\frac{1}{2} beide negatief of beide positief zijn. Bekijk de melding wanneer x-1 en x+\frac{1}{2} beide negatief zijn.
x<-\frac{1}{2}
De oplossing die voldoet aan beide ongelijkheden, is x<-\frac{1}{2}.
x+\frac{1}{2}>0 x-1>0
Bekijk de melding wanneer x-1 en x+\frac{1}{2} beide positief zijn.
x>1
De oplossing die voldoet aan beide ongelijkheden, is x>1.
x<-\frac{1}{2}\text{; }x>1
De uiteindelijke oplossing is de samenvoeging van de verkregen oplossingen.