Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

a+b=3 ab=2\left(-20\right)=-40
Als u de vergelijking wilt oplossen, factoriseert u de linkerkant door te groeperen. De linkerkant moet eerst worden herschreven als 2x^{2}+ax+bx-20. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,40 -2,20 -4,10 -5,8
Omdat ab negatief is, a en b de tegenovergestelde tekens. Omdat a+b positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -40 geven weergeven.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Bereken de som voor elk paar.
a=-5 b=8
De oplossing is het paar dat de som 3 geeft.
\left(2x^{2}-5x\right)+\left(8x-20\right)
Herschrijf 2x^{2}+3x-20 als \left(2x^{2}-5x\right)+\left(8x-20\right).
x\left(2x-5\right)+4\left(2x-5\right)
Factoriseer x in de eerste en 4 in de tweede groep.
\left(2x-5\right)\left(x+4\right)
Factoriseer de gemeenschappelijke term 2x-5 door gebruik te maken van distributieve eigenschap.
x=\frac{5}{2} x=-4
Als u oplossingen voor vergelijkingen zoekt, lost u 2x-5=0 en x+4=0 op.
2x^{2}+3x-20=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-20\right)}}{2\times 2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 2 voor a, 3 voor b en -20 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-20\right)}}{2\times 2}
Bereken de wortel van 3.
x=\frac{-3±\sqrt{9-8\left(-20\right)}}{2\times 2}
Vermenigvuldig -4 met 2.
x=\frac{-3±\sqrt{9+160}}{2\times 2}
Vermenigvuldig -8 met -20.
x=\frac{-3±\sqrt{169}}{2\times 2}
Tel 9 op bij 160.
x=\frac{-3±13}{2\times 2}
Bereken de vierkantswortel van 169.
x=\frac{-3±13}{4}
Vermenigvuldig 2 met 2.
x=\frac{10}{4}
Los nu de vergelijking x=\frac{-3±13}{4} op als ± positief is. Tel -3 op bij 13.
x=\frac{5}{2}
Vereenvoudig de breuk \frac{10}{4} tot de kleinste termen door 2 af te trekken en weg te strepen.
x=-\frac{16}{4}
Los nu de vergelijking x=\frac{-3±13}{4} op als ± negatief is. Trek 13 af van -3.
x=-4
Deel -16 door 4.
x=\frac{5}{2} x=-4
De vergelijking is nu opgelost.
2x^{2}+3x-20=0
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
2x^{2}+3x-20-\left(-20\right)=-\left(-20\right)
Tel aan beide kanten van de vergelijking 20 op.
2x^{2}+3x=-\left(-20\right)
Als u -20 aftrekt van zichzelf is de uitkomst 0.
2x^{2}+3x=20
Trek -20 af van 0.
\frac{2x^{2}+3x}{2}=\frac{20}{2}
Deel beide zijden van de vergelijking door 2.
x^{2}+\frac{3}{2}x=\frac{20}{2}
Delen door 2 maakt de vermenigvuldiging met 2 ongedaan.
x^{2}+\frac{3}{2}x=10
Deel 20 door 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=10+\left(\frac{3}{4}\right)^{2}
Deel \frac{3}{2}, de coëfficiënt van de x term door 2 om \frac{3}{4} op te halen. Voeg vervolgens het kwadraat van \frac{3}{4} toe aan beide zijden van de vergelijking. Met deze stap wordt de linkerzijde van de vergelijking een perfect vier kant.
x^{2}+\frac{3}{2}x+\frac{9}{16}=10+\frac{9}{16}
Bereken de wortel van \frac{3}{4} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{169}{16}
Tel 10 op bij \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{169}{16}
Factoriseer x^{2}+\frac{3}{2}x+\frac{9}{16}. In het algemeen, als x^{2}+bx+c een kwadraatgetal is, kan het altijd worden gefactoriseerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+\frac{3}{4}=\frac{13}{4} x+\frac{3}{4}=-\frac{13}{4}
Vereenvoudig.
x=\frac{5}{2} x=-4
Trek aan beide kanten van de vergelijking \frac{3}{4} af.