Overslaan en naar de inhoud gaan
Factoriseren
Tick mark Image
Evalueren
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

p+q=5 pq=2\left(-12\right)=-24
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als 2a^{2}+pa+qa-12. Als u p en q wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,24 -2,12 -3,8 -4,6
Omdat pq negatief is, p en q de tegenovergestelde tekens. Omdat p+q positief is, heeft het positieve getal een grotere absolute waarde dan het negatieve getal. Alle paren met gehele getallen die een product -24 geven weergeven.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Bereken de som voor elk paar.
p=-3 q=8
De oplossing is het paar dat de som 5 geeft.
\left(2a^{2}-3a\right)+\left(8a-12\right)
Herschrijf 2a^{2}+5a-12 als \left(2a^{2}-3a\right)+\left(8a-12\right).
a\left(2a-3\right)+4\left(2a-3\right)
Beledigt a in de eerste en 4 in de tweede groep.
\left(2a-3\right)\left(a+4\right)
Factoriseer de gemeenschappelijke term 2a-3 door gebruik te maken van distributieve eigenschap.
2a^{2}+5a-12=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
Bereken de wortel van 5.
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Vermenigvuldig -4 met 2.
a=\frac{-5±\sqrt{25+96}}{2\times 2}
Vermenigvuldig -8 met -12.
a=\frac{-5±\sqrt{121}}{2\times 2}
Tel 25 op bij 96.
a=\frac{-5±11}{2\times 2}
Bereken de vierkantswortel van 121.
a=\frac{-5±11}{4}
Vermenigvuldig 2 met 2.
a=\frac{6}{4}
Los nu de vergelijking a=\frac{-5±11}{4} op als ± positief is. Tel -5 op bij 11.
a=\frac{3}{2}
Vereenvoudig de breuk \frac{6}{4} tot de kleinste termen door 2 af te trekken en weg te strepen.
a=-\frac{16}{4}
Los nu de vergelijking a=\frac{-5±11}{4} op als ± negatief is. Trek 11 af van -5.
a=-4
Deel -16 door 4.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door \frac{3}{2} en x_{2} door -4.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
Trek \frac{3}{2} af van a door een gemeenschappelijke noemer te bepalen en de tellers af te trekken. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
Streep de grootste gemene deler 2 in 2 en 2 tegen elkaar weg.