Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

28x^{2}+121x^{2}=9
Vermenigvuldig 2 en 14 om 28 te krijgen.
149x^{2}=9
Combineer 28x^{2} en 121x^{2} om 149x^{2} te krijgen.
x^{2}=\frac{9}{149}
Deel beide zijden van de vergelijking door 149.
x=\frac{3\sqrt{149}}{149} x=-\frac{3\sqrt{149}}{149}
Neem de vierkantswortel van beide zijden van de vergelijking.
28x^{2}+121x^{2}=9
Vermenigvuldig 2 en 14 om 28 te krijgen.
149x^{2}=9
Combineer 28x^{2} en 121x^{2} om 149x^{2} te krijgen.
149x^{2}-9=0
Trek aan beide kanten 9 af.
x=\frac{0±\sqrt{0^{2}-4\times 149\left(-9\right)}}{2\times 149}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 149 voor a, 0 voor b en -9 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 149\left(-9\right)}}{2\times 149}
Bereken de wortel van 0.
x=\frac{0±\sqrt{-596\left(-9\right)}}{2\times 149}
Vermenigvuldig -4 met 149.
x=\frac{0±\sqrt{5364}}{2\times 149}
Vermenigvuldig -596 met -9.
x=\frac{0±6\sqrt{149}}{2\times 149}
Bereken de vierkantswortel van 5364.
x=\frac{0±6\sqrt{149}}{298}
Vermenigvuldig 2 met 149.
x=\frac{3\sqrt{149}}{149}
Los nu de vergelijking x=\frac{0±6\sqrt{149}}{298} op als ± positief is.
x=-\frac{3\sqrt{149}}{149}
Los nu de vergelijking x=\frac{0±6\sqrt{149}}{298} op als ± negatief is.
x=\frac{3\sqrt{149}}{149} x=-\frac{3\sqrt{149}}{149}
De vergelijking is nu opgelost.