Oplossen voor z (complex solution)
z=\left(|2\left(10-2^{x}\right)|\right)^{\frac{Re(x)-iIm(x)-1}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}-2Re(x)+1}}e^{\frac{Im(x)arg(2\left(10-2^{x}\right))+iRe(x)arg(2\left(10-2^{x}\right))-iarg(2\left(10-2^{x}\right))}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}-2Re(x)+1}-\frac{2i\pi n_{1}Re(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}-2Re(x)+1}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}-2Re(x)+1}+\frac{2i\pi n_{1}}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}-2Re(x)+1}}
n_{1}\in \mathrm{Z}
Oplossen voor z
\left\{\begin{matrix}z=\left(2\left(10-2^{x}\right)\right)^{\frac{1}{x-1}}\text{, }&\left(Numerator(x-1)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>\log_{2}\left(10\right)\right)\text{ or }\left(x\neq 1\text{ and }Numerator(x-1)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<\log_{2}\left(10\right)\right)\text{ or }\left(\left(20-2\times 2^{x}\right)^{\frac{1}{x-1}}>0\text{ and }x\neq 1\text{ and }x\leq \log_{2}\left(10\right)\right)\text{ or }\left(\left(20-2\times 2^{x}\right)^{\frac{1}{x-1}}<0\text{ and }x\neq 1\text{ and }x\leq \log_{2}\left(10\right)\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }x=\log_{2}\left(10\right)\\z=-\left(2\left(10-2^{x}\right)\right)^{\frac{1}{x-1}}\text{, }&\left(x\neq 1\text{ and }\left(20-2\times 2^{x}\right)^{\frac{1}{x-1}}>0\text{ and }Numerator(x-1)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<\log_{2}\left(10\right)\right)\text{ or }\left(x\neq 1\text{ and }\left(20-2\times 2^{x}\right)^{\frac{1}{x-1}}<0\text{ and }Numerator(x-1)\text{bmod}2=0\text{ and }x<\log_{2}\left(10\right)\right)\text{ or }\left(x=\log_{2}\left(10\right)\text{ and }Numerator(\log_{2}\left(10\right)-1)\text{bmod}2=0\right)\text{ or }\left(x\neq 1\text{ and }Numerator(x-1)\text{bmod}2=0\text{ and }Numerator(x-1)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x<\log_{2}\left(10\right)\right)\text{ or }\left(Numerator(x-1)\text{bmod}2=1\text{ and }Numerator(x-1)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }x>\log_{2}\left(10\right)\right)\end{matrix}\right,
Delen
Gekopieerd naar klembord
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}