Factoriseren
\left(2yx^{2}-3z\right)\left(2yx^{2}+3z\right)\left(4y^{2}x^{4}+9z^{2}\right)
Evalueren
16y^{4}x^{8}-81z^{4}
Delen
Gekopieerd naar klembord
\left(4x^{4}y^{2}-9z^{2}\right)\left(4x^{4}y^{2}+9z^{2}\right)
Herschrijf 16x^{8}y^{4}-81z^{4} als \left(4x^{4}y^{2}\right)^{2}-\left(9z^{2}\right)^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(4y^{2}x^{4}-9z^{2}\right)\left(4y^{2}x^{4}+9z^{2}\right)
Rangschik de termen opnieuw.
\left(2x^{2}y-3z\right)\left(2x^{2}y+3z\right)
Houd rekening met 4y^{2}x^{4}-9z^{2}. Herschrijf 4y^{2}x^{4}-9z^{2} als \left(2x^{2}y\right)^{2}-\left(3z\right)^{2}. Het verschil tussen de kwadraten kan worden beschouwd met behulp van de regel: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(2yx^{2}-3z\right)\left(2yx^{2}+3z\right)
Rangschik de termen opnieuw.
\left(2yx^{2}-3z\right)\left(2yx^{2}+3z\right)\left(4y^{2}x^{4}+9z^{2}\right)
Herschrijf de volledige gefactoriseerde expressie.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}