Factoriseren
\left(3x+2\right)\left(4x+3\right)
Evalueren
\left(3x+2\right)\left(4x+3\right)
Grafiek
Delen
Gekopieerd naar klembord
a+b=17 ab=12\times 6=72
Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als 12x^{2}+ax+bx+6. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
1,72 2,36 3,24 4,18 6,12 8,9
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b positief is, zijn a en b positief. Alle paren met gehele getallen die een product 72 geven weergeven.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Bereken de som voor elk paar.
a=8 b=9
De oplossing is het paar dat de som 17 geeft.
\left(12x^{2}+8x\right)+\left(9x+6\right)
Herschrijf 12x^{2}+17x+6 als \left(12x^{2}+8x\right)+\left(9x+6\right).
4x\left(3x+2\right)+3\left(3x+2\right)
Beledigt 4x in de eerste en 3 in de tweede groep.
\left(3x+2\right)\left(4x+3\right)
Factoriseer de gemeenschappelijke term 3x+2 door gebruik te maken van distributieve eigenschap.
12x^{2}+17x+6=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-17±\sqrt{17^{2}-4\times 12\times 6}}{2\times 12}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-17±\sqrt{289-4\times 12\times 6}}{2\times 12}
Bereken de wortel van 17.
x=\frac{-17±\sqrt{289-48\times 6}}{2\times 12}
Vermenigvuldig -4 met 12.
x=\frac{-17±\sqrt{289-288}}{2\times 12}
Vermenigvuldig -48 met 6.
x=\frac{-17±\sqrt{1}}{2\times 12}
Tel 289 op bij -288.
x=\frac{-17±1}{2\times 12}
Bereken de vierkantswortel van 1.
x=\frac{-17±1}{24}
Vermenigvuldig 2 met 12.
x=-\frac{16}{24}
Los nu de vergelijking x=\frac{-17±1}{24} op als ± positief is. Tel -17 op bij 1.
x=-\frac{2}{3}
Vereenvoudig de breuk \frac{-16}{24} tot de kleinste termen door 8 af te trekken en weg te strepen.
x=-\frac{18}{24}
Los nu de vergelijking x=\frac{-17±1}{24} op als ± negatief is. Trek 1 af van -17.
x=-\frac{3}{4}
Vereenvoudig de breuk \frac{-18}{24} tot de kleinste termen door 6 af te trekken en weg te strepen.
12x^{2}+17x+6=12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-\frac{3}{4}\right)\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door -\frac{2}{3} en x_{2} door -\frac{3}{4}.
12x^{2}+17x+6=12\left(x+\frac{2}{3}\right)\left(x+\frac{3}{4}\right)
Vereenvoudig alle uitdrukkingen in de formule p-\left(-q\right) naar p+q.
12x^{2}+17x+6=12\times \frac{3x+2}{3}\left(x+\frac{3}{4}\right)
Tel \frac{2}{3} op bij x door een gemeenschappelijke noemer te bepalen en de tellers op te tellen. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
12x^{2}+17x+6=12\times \frac{3x+2}{3}\times \frac{4x+3}{4}
Tel \frac{3}{4} op bij x door een gemeenschappelijke noemer te bepalen en de tellers op te tellen. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
12x^{2}+17x+6=12\times \frac{\left(3x+2\right)\left(4x+3\right)}{3\times 4}
Vermenigvuldig \frac{3x+2}{3} met \frac{4x+3}{4} door teller maal teller en noemer maal noemer te vermenigvuldigen. Vereenvoudig vervolgens de breuk naar de kleinste termen indien mogelijk.
12x^{2}+17x+6=12\times \frac{\left(3x+2\right)\left(4x+3\right)}{12}
Vermenigvuldig 3 met 4.
12x^{2}+17x+6=\left(3x+2\right)\left(4x+3\right)
Streep de grootste gemene deler 12 in 12 en 12 tegen elkaar weg.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}