Oplossen voor c
\left\{\begin{matrix}\\c=300m\mu \text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&l=0\text{ or }\mu =0\end{matrix}\right,
Oplossen voor l
\left\{\begin{matrix}\\l=0\text{, }&\text{unconditionally}\\l\in \mathrm{R}\text{, }&c=300m\mu \text{ or }\mu =0\end{matrix}\right,
Delen
Gekopieerd naar klembord
100\mu ^{2}m\times 150l=50\mu lc
Vermenigvuldig \mu en \mu om \mu ^{2} te krijgen.
15000\mu ^{2}ml=50\mu lc
Vermenigvuldig 100 en 150 om 15000 te krijgen.
50\mu lc=15000\mu ^{2}ml
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
50l\mu c=15000lm\mu ^{2}
De vergelijking heeft de standaardvorm.
\frac{50l\mu c}{50l\mu }=\frac{15000lm\mu ^{2}}{50l\mu }
Deel beide zijden van de vergelijking door 50\mu l.
c=\frac{15000lm\mu ^{2}}{50l\mu }
Delen door 50\mu l maakt de vermenigvuldiging met 50\mu l ongedaan.
c=300m\mu
Deel 15000\mu ^{2}ml door 50\mu l.
100\mu ^{2}m\times 150l=50\mu lc
Vermenigvuldig \mu en \mu om \mu ^{2} te krijgen.
15000\mu ^{2}ml=50\mu lc
Vermenigvuldig 100 en 150 om 15000 te krijgen.
15000\mu ^{2}ml-50\mu lc=0
Trek aan beide kanten 50\mu lc af.
\left(15000\mu ^{2}m-50\mu c\right)l=0
Combineer alle termen met l.
\left(15000m\mu ^{2}-50c\mu \right)l=0
De vergelijking heeft de standaardvorm.
l=0
Deel 0 door 15000\mu ^{2}m-50\mu c.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}