Oplossen voor x
x=\frac{\sqrt{15}}{3}-1\approx 0,290994449
x=-\frac{\sqrt{15}}{3}-1\approx -2,290994449
Grafiek
Delen
Gekopieerd naar klembord
x^{2}+2x+1=\frac{5}{3}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x^{2}+2x+1-\frac{5}{3}=\frac{5}{3}-\frac{5}{3}
Trek aan beide kanten van de vergelijking \frac{5}{3} af.
x^{2}+2x+1-\frac{5}{3}=0
Als u \frac{5}{3} aftrekt van zichzelf, is de uitkomst 0.
x^{2}+2x-\frac{2}{3}=0
Trek \frac{5}{3} af van 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{2}{3}\right)}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, 2 voor b en -\frac{2}{3} voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{2}{3}\right)}}{2}
Bereken de wortel van 2.
x=\frac{-2±\sqrt{4+\frac{8}{3}}}{2}
Vermenigvuldig -4 met -\frac{2}{3}.
x=\frac{-2±\sqrt{\frac{20}{3}}}{2}
Tel 4 op bij \frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{2}
Bereken de vierkantswortel van \frac{20}{3}.
x=\frac{\frac{2\sqrt{15}}{3}-2}{2}
Los nu de vergelijking x=\frac{-2±\frac{2\sqrt{15}}{3}}{2} op als ± positief is. Tel -2 op bij \frac{2\sqrt{15}}{3}.
x=\frac{\sqrt{15}}{3}-1
Deel -2+\frac{2\sqrt{15}}{3} door 2.
x=\frac{-\frac{2\sqrt{15}}{3}-2}{2}
Los nu de vergelijking x=\frac{-2±\frac{2\sqrt{15}}{3}}{2} op als ± negatief is. Trek \frac{2\sqrt{15}}{3} af van -2.
x=-\frac{\sqrt{15}}{3}-1
Deel -2-\frac{2\sqrt{15}}{3} door 2.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
De vergelijking is nu opgelost.
x^{2}+2x+1=\frac{5}{3}
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
\left(x+1\right)^{2}=\frac{5}{3}
Factoriseer x^{2}+2x+1. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{5}{3}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+1=\frac{\sqrt{15}}{3} x+1=-\frac{\sqrt{15}}{3}
Vereenvoudig.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
Trek aan beide kanten van de vergelijking 1 af.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}