Oplossen voor x (complex solution)
x=2+\sqrt{5}i\approx 2+2,236067977i
x=-\sqrt{5}i+2\approx 2-2,236067977i
Grafiek
Delen
Gekopieerd naar klembord
0=x^{2}-4x+9
Tel 4 en 5 op om 9 te krijgen.
x^{2}-4x+9=0
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, -4 voor b en 9 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9}}{2}
Bereken de wortel van -4.
x=\frac{-\left(-4\right)±\sqrt{16-36}}{2}
Vermenigvuldig -4 met 9.
x=\frac{-\left(-4\right)±\sqrt{-20}}{2}
Tel 16 op bij -36.
x=\frac{-\left(-4\right)±2\sqrt{5}i}{2}
Bereken de vierkantswortel van -20.
x=\frac{4±2\sqrt{5}i}{2}
Het tegenovergestelde van -4 is 4.
x=\frac{4+2\sqrt{5}i}{2}
Los nu de vergelijking x=\frac{4±2\sqrt{5}i}{2} op als ± positief is. Tel 4 op bij 2i\sqrt{5}.
x=2+\sqrt{5}i
Deel 4+2i\sqrt{5} door 2.
x=\frac{-2\sqrt{5}i+4}{2}
Los nu de vergelijking x=\frac{4±2\sqrt{5}i}{2} op als ± negatief is. Trek 2i\sqrt{5} af van 4.
x=-\sqrt{5}i+2
Deel 4-2i\sqrt{5} door 2.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
De vergelijking is nu opgelost.
0=x^{2}-4x+9
Tel 4 en 5 op om 9 te krijgen.
x^{2}-4x+9=0
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
x^{2}-4x=-9
Trek aan beide kanten 9 af. Een waarde afgetrokken van nul retourneert de bijbehorende negatie.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Deel -4, de coëfficiënt van de x term door 2 om -2 op te halen. Voeg vervolgens het kwadraat van -2 toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}-4x+4=-9+4
Bereken de wortel van -2.
x^{2}-4x+4=-5
Tel -9 op bij 4.
\left(x-2\right)^{2}=-5
Factoriseer x^{2}-4x+4. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Neem de vierkantswortel van beide zijden van de vergelijking.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Vereenvoudig.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Tel aan beide kanten van de vergelijking 2 op.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}