Factoriseren
\left(1-x\right)\left(x-1\right)\left(x+2\right)
Evalueren
-x^{3}+3x-2
Grafiek
Delen
Gekopieerd naar klembord
\left(x+2\right)\left(-x^{2}+2x-1\right)
Volgens de stelling over rationale wortels hebben alle rationale wortels van een polynoom de vorm \frac{p}{q}, waarbij p de constante term -2 deelt en q de leidende coëfficiënt -1 deelt. Een van deze wortels is -2. Factoriseer de polynoom door deze te delen door x+2.
a+b=2 ab=-\left(-1\right)=1
Houd rekening met -x^{2}+2x-1. Factoriseer de expressie door te groeperen. De expressie moet eerst worden herschreven als -x^{2}+ax+bx-1. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
a=1 b=1
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b positief is, zijn a en b positief. Het enige paar is de systeem oplossing.
\left(-x^{2}+x\right)+\left(x-1\right)
Herschrijf -x^{2}+2x-1 als \left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Factoriseer -x-x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Factoriseer de gemeenschappelijke term x-1 door gebruik te maken van distributieve eigenschap.
\left(x-1\right)\left(-x+1\right)\left(x+2\right)
Herschrijf de volledige gefactoriseerde expressie.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}