Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Factoriseren
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

2x+3x+1-x^{2}
Vermenigvuldig 1 en 3 om 3 te krijgen.
5x+1-x^{2}
Combineer 2x en 3x om 5x te krijgen.
factor(2x+3x+1-x^{2})
Vermenigvuldig 1 en 3 om 3 te krijgen.
factor(5x+1-x^{2})
Combineer 2x en 3x om 5x te krijgen.
-x^{2}+5x+1=0
Kwadratische polynoom kan worden gefactoriseerd met de transformatie ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), waarbij x_{1} en x_{2} de oplossingen van de kwadratische vergelijking ax^{2}+bx+c=0 zijn.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)}}{2\left(-1\right)}
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-5±\sqrt{25-4\left(-1\right)}}{2\left(-1\right)}
Bereken de wortel van 5.
x=\frac{-5±\sqrt{25+4}}{2\left(-1\right)}
Vermenigvuldig -4 met -1.
x=\frac{-5±\sqrt{29}}{2\left(-1\right)}
Tel 25 op bij 4.
x=\frac{-5±\sqrt{29}}{-2}
Vermenigvuldig 2 met -1.
x=\frac{\sqrt{29}-5}{-2}
Los nu de vergelijking x=\frac{-5±\sqrt{29}}{-2} op als ± positief is. Tel -5 op bij \sqrt{29}.
x=\frac{5-\sqrt{29}}{2}
Deel -5+\sqrt{29} door -2.
x=\frac{-\sqrt{29}-5}{-2}
Los nu de vergelijking x=\frac{-5±\sqrt{29}}{-2} op als ± negatief is. Trek \sqrt{29} af van -5.
x=\frac{\sqrt{29}+5}{2}
Deel -5-\sqrt{29} door -2.
-x^{2}+5x+1=-\left(x-\frac{5-\sqrt{29}}{2}\right)\left(x-\frac{\sqrt{29}+5}{2}\right)
Factoriseer de oorspronkelijke expressie met behulp van ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Vervang x_{1} door \frac{5-\sqrt{29}}{2} en x_{2} door \frac{5+\sqrt{29}}{2}.