Oplossen voor x (complex solution)
\left\{\begin{matrix}x=-\frac{6+a^{2}-y^{2}}{2a+3}\text{, }&a\neq -\frac{3}{2}\\x\in \mathrm{C}\text{, }&\left(y=\frac{\sqrt{33}}{2}\text{ or }y=-\frac{\sqrt{33}}{2}\right)\text{ and }a=-\frac{3}{2}\end{matrix}\right,
Oplossen voor x
\left\{\begin{matrix}x=-\frac{6+a^{2}-y^{2}}{2a+3}\text{, }&a\neq -\frac{3}{2}\\x\in \mathrm{R}\text{, }&a=-\frac{3}{2}\text{ and }|y|=\frac{\sqrt{33}}{2}\end{matrix}\right,
Oplossen voor a (complex solution)
a=-\left(\sqrt{x^{2}-3x+y^{2}-6}+x\right)
a=\sqrt{x^{2}-3x+y^{2}-6}-x
Oplossen voor a
a=-\left(\sqrt{x^{2}-3x+y^{2}-6}+x\right)
a=\sqrt{x^{2}-3x+y^{2}-6}-x\text{, }x\leq \frac{-\sqrt{33-4y^{2}}+3}{2}\text{ or }x\geq \frac{\sqrt{33-4y^{2}}+3}{2}\text{ or }|y|\geq \frac{\sqrt{33}}{2}
Grafiek
Delen
Gekopieerd naar klembord
x^{2}+2xa+a^{2}-y^{2}=x^{2}-3x-6
Gebruik het binomium van Newton \left(p+q\right)^{2}=p^{2}+2pq+q^{2} om \left(x+a\right)^{2} uit te breiden.
x^{2}+2xa+a^{2}-y^{2}-x^{2}=-3x-6
Trek aan beide kanten x^{2} af.
2xa+a^{2}-y^{2}=-3x-6
Combineer x^{2} en -x^{2} om 0 te krijgen.
2xa+a^{2}-y^{2}+3x=-6
Voeg 3x toe aan beide zijden.
2xa-y^{2}+3x=-6-a^{2}
Trek aan beide kanten a^{2} af.
2xa+3x=-6-a^{2}+y^{2}
Voeg y^{2} toe aan beide zijden.
\left(2a+3\right)x=-6-a^{2}+y^{2}
Combineer alle termen met x.
\left(2a+3\right)x=y^{2}-a^{2}-6
De vergelijking heeft de standaardvorm.
\frac{\left(2a+3\right)x}{2a+3}=\frac{y^{2}-a^{2}-6}{2a+3}
Deel beide zijden van de vergelijking door 3+2a.
x=\frac{y^{2}-a^{2}-6}{2a+3}
Delen door 3+2a maakt de vermenigvuldiging met 3+2a ongedaan.
x^{2}+2xa+a^{2}-y^{2}=x^{2}-3x-6
Gebruik het binomium van Newton \left(p+q\right)^{2}=p^{2}+2pq+q^{2} om \left(x+a\right)^{2} uit te breiden.
x^{2}+2xa+a^{2}-y^{2}-x^{2}=-3x-6
Trek aan beide kanten x^{2} af.
2xa+a^{2}-y^{2}=-3x-6
Combineer x^{2} en -x^{2} om 0 te krijgen.
2xa+a^{2}-y^{2}+3x=-6
Voeg 3x toe aan beide zijden.
2xa-y^{2}+3x=-6-a^{2}
Trek aan beide kanten a^{2} af.
2xa+3x=-6-a^{2}+y^{2}
Voeg y^{2} toe aan beide zijden.
\left(2a+3\right)x=-6-a^{2}+y^{2}
Combineer alle termen met x.
\left(2a+3\right)x=y^{2}-a^{2}-6
De vergelijking heeft de standaardvorm.
\frac{\left(2a+3\right)x}{2a+3}=\frac{y^{2}-a^{2}-6}{2a+3}
Deel beide zijden van de vergelijking door 3+2a.
x=\frac{y^{2}-a^{2}-6}{2a+3}
Delen door 3+2a maakt de vermenigvuldiging met 3+2a ongedaan.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}