Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

-2x+6+2=\left(x+6\right)x
Combineer x en -3x om -2x te krijgen.
-2x+8=\left(x+6\right)x
Tel 6 en 2 op om 8 te krijgen.
-2x+8=x^{2}+6x
Gebruik de distributieve eigenschap om x+6 te vermenigvuldigen met x.
-2x+8-x^{2}=6x
Trek aan beide kanten x^{2} af.
-2x+8-x^{2}-6x=0
Trek aan beide kanten 6x af.
-8x+8-x^{2}=0
Combineer -2x en -6x om -8x te krijgen.
-x^{2}-8x+8=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer -1 voor a, -8 voor b en 8 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 8}}{2\left(-1\right)}
Bereken de wortel van -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 8}}{2\left(-1\right)}
Vermenigvuldig -4 met -1.
x=\frac{-\left(-8\right)±\sqrt{64+32}}{2\left(-1\right)}
Vermenigvuldig 4 met 8.
x=\frac{-\left(-8\right)±\sqrt{96}}{2\left(-1\right)}
Tel 64 op bij 32.
x=\frac{-\left(-8\right)±4\sqrt{6}}{2\left(-1\right)}
Bereken de vierkantswortel van 96.
x=\frac{8±4\sqrt{6}}{2\left(-1\right)}
Het tegenovergestelde van -8 is 8.
x=\frac{8±4\sqrt{6}}{-2}
Vermenigvuldig 2 met -1.
x=\frac{4\sqrt{6}+8}{-2}
Los nu de vergelijking x=\frac{8±4\sqrt{6}}{-2} op als ± positief is. Tel 8 op bij 4\sqrt{6}.
x=-2\sqrt{6}-4
Deel 8+4\sqrt{6} door -2.
x=\frac{8-4\sqrt{6}}{-2}
Los nu de vergelijking x=\frac{8±4\sqrt{6}}{-2} op als ± negatief is. Trek 4\sqrt{6} af van 8.
x=2\sqrt{6}-4
Deel 8-4\sqrt{6} door -2.
x=-2\sqrt{6}-4 x=2\sqrt{6}-4
De vergelijking is nu opgelost.
-2x+6+2=\left(x+6\right)x
Combineer x en -3x om -2x te krijgen.
-2x+8=\left(x+6\right)x
Tel 6 en 2 op om 8 te krijgen.
-2x+8=x^{2}+6x
Gebruik de distributieve eigenschap om x+6 te vermenigvuldigen met x.
-2x+8-x^{2}=6x
Trek aan beide kanten x^{2} af.
-2x+8-x^{2}-6x=0
Trek aan beide kanten 6x af.
-8x+8-x^{2}=0
Combineer -2x en -6x om -8x te krijgen.
-8x-x^{2}=-8
Trek aan beide kanten 8 af. Een waarde afgetrokken van nul retourneert de bijbehorende negatie.
-x^{2}-8x=-8
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=-\frac{8}{-1}
Deel beide zijden van de vergelijking door -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{8}{-1}
Delen door -1 maakt de vermenigvuldiging met -1 ongedaan.
x^{2}+8x=-\frac{8}{-1}
Deel -8 door -1.
x^{2}+8x=8
Deel -8 door -1.
x^{2}+8x+4^{2}=8+4^{2}
Deel 8, de coëfficiënt van de x term door 2 om 4 op te halen. Voeg vervolgens het kwadraat van 4 toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}+8x+16=8+16
Bereken de wortel van 4.
x^{2}+8x+16=24
Tel 8 op bij 16.
\left(x+4\right)^{2}=24
Factoriseer x^{2}+8x+16. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{24}
Neem de vierkantswortel van beide zijden van de vergelijking.
x+4=2\sqrt{6} x+4=-2\sqrt{6}
Vereenvoudig.
x=2\sqrt{6}-4 x=-2\sqrt{6}-4
Trek aan beide kanten van de vergelijking 4 af.