Oplossen voor t
t=3+\frac{5}{x}+\frac{6}{x^{2}}
x\neq 0
Oplossen voor x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{24t-47}+5}{2\left(t-3\right)}\text{; }x=\frac{-\sqrt{24t-47}+5}{2\left(t-3\right)}\text{, }&t\neq 3\\x=-\frac{6}{5}\text{, }&t=3\end{matrix}\right,
Oplossen voor x
\left\{\begin{matrix}x=\frac{\sqrt{24t-47}+5}{2\left(t-3\right)}\text{; }x=\frac{-\sqrt{24t-47}+5}{2\left(t-3\right)}\text{, }&t\neq 3\text{ and }t\geq \frac{47}{24}\\x=-\frac{6}{5}\text{, }&t=3\end{matrix}\right,
Grafiek
Delen
Gekopieerd naar klembord
tx^{2}-3x^{2}-5x-6=0
Gebruik de distributieve eigenschap om t-3 te vermenigvuldigen met x^{2}.
tx^{2}-5x-6=3x^{2}
Voeg 3x^{2} toe aan beide zijden. Een waarde plus nul retourneert zichzelf.
tx^{2}-6=3x^{2}+5x
Voeg 5x toe aan beide zijden.
tx^{2}=3x^{2}+5x+6
Voeg 6 toe aan beide zijden.
x^{2}t=3x^{2}+5x+6
De vergelijking heeft de standaardvorm.
\frac{x^{2}t}{x^{2}}=\frac{3x^{2}+5x+6}{x^{2}}
Deel beide zijden van de vergelijking door x^{2}.
t=\frac{3x^{2}+5x+6}{x^{2}}
Delen door x^{2} maakt de vermenigvuldiging met x^{2} ongedaan.
t=3+\frac{5x+6}{x^{2}}
Deel 3x^{2}+5x+6 door x^{2}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}