Overslaan en naar de inhoud gaan
Evalueren
Tick mark Image
Differentieer ten opzichte van a
Tick mark Image

Vergelijkbare problemen van Web Search

Delen

64^{-\frac{1}{6}}\left(a^{24}\right)^{-\frac{1}{6}}
Breid \left(64a^{24}\right)^{-\frac{1}{6}} uit.
64^{-\frac{1}{6}}a^{-4}
Als u de macht van een getal wilt verheffen tot de macht van een ander getal, vermenigvuldigt u de exponenten. Vermenigvuldig 24 en -\frac{1}{6} om -4 te krijgen.
\frac{1}{2}a^{-4}
Bereken 64 tot de macht van -\frac{1}{6} en krijg \frac{1}{2}.
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{1}{6}-1}\frac{\mathrm{d}}{\mathrm{d}a}(64a^{24})
Als F de compositie is van twee differentieerbare functies, f\left(u\right) en u=g\left(x\right), dat wil zeggen wanneer F\left(x\right)=f\left(g\left(x\right)\right), dan is de afgeleide van F de afgeleide van f ten opzichte van u maal de afgeleide van g ten opzichte van x, dat wil zeggen \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{7}{6}}\times 24\times 64a^{24-1}
De afgeleide van een polynoom is de som van de afgeleiden van de bijbehorende termen. De afgeleide van een constante term is 0. De afgeleide van ax^{n} is nax^{n-1}.
-256a^{23}\times \left(64a^{24}\right)^{-\frac{7}{6}}
Vereenvoudig.