( \cos x \cos y + 2 x ) d x - ( \sin x \sin y + 2 y ) d y = 0
Oplossen voor d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x\left(\cos(x)\cos(y)+2x\right)-y\left(\sin(x)\sin(y)+2y\right)=0\end{matrix}\right,
Delen
Gekopieerd naar klembord
\left(\cos(x)\cos(y)d+2xd\right)x-\left(\sin(x)\sin(y)+2y\right)dy=0
Gebruik de distributieve eigenschap om \cos(x)\cos(y)+2x te vermenigvuldigen met d.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)+2y\right)dy=0
Gebruik de distributieve eigenschap om \cos(x)\cos(y)d+2xd te vermenigvuldigen met x.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)d+2yd\right)y=0
Gebruik de distributieve eigenschap om \sin(x)\sin(y)+2y te vermenigvuldigen met d.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)dy+2dy^{2}\right)=0
Gebruik de distributieve eigenschap om \sin(x)\sin(y)d+2yd te vermenigvuldigen met y.
\cos(x)\cos(y)dx+2dx^{2}-\sin(x)\sin(y)dy-2dy^{2}=0
Zoek het tegenovergestelde van elke term om het tegenovergestelde van \sin(x)\sin(y)dy+2dy^{2} te krijgen.
\left(\cos(x)\cos(y)x+2x^{2}-\sin(x)\sin(y)y-2y^{2}\right)d=0
Combineer alle termen met d.
\left(x\cos(x)\cos(y)-y\sin(x)\sin(y)+2x^{2}-2y^{2}\right)d=0
De vergelijking heeft de standaardvorm.
d=0
Deel 0 door \cos(x)\cos(y)x+2x^{2}-\sin(x)\sin(y)y-2y^{2}.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}