Oplossen voor y (complex solution)
y=\frac{2}{x^{3}+1}
x\neq -1\text{ and }x\neq \frac{-\sqrt{3}i+1}{2}\text{ and }x\neq \frac{1+\sqrt{3}i}{2}
Oplossen voor y
y=\frac{2}{x^{3}+1}
x\neq -1
Oplossen voor x (complex solution)
x=e^{\frac{2\pi i}{3}}\sqrt[3]{-1+\frac{2}{y}}
x=\sqrt[3]{-1+\frac{2}{y}}
x=e^{\frac{4\pi i}{3}}\sqrt[3]{-1+\frac{2}{y}}\text{, }y\neq 0
Oplossen voor x
x=\sqrt[3]{-1+\frac{2}{y}}
y\neq 0
Grafiek
Delen
Gekopieerd naar klembord
2y^{-1}=x^{3}+1
Vermenigvuldig beide zijden van de vergelijking met 2.
2\times \frac{1}{y}=x^{3}+1
Rangschik de termen opnieuw.
2\times 1=yx^{3}+y
Variabele y kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met y.
2=yx^{3}+y
Vermenigvuldig 2 en 1 om 2 te krijgen.
yx^{3}+y=2
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\left(x^{3}+1\right)y=2
Combineer alle termen met y.
\frac{\left(x^{3}+1\right)y}{x^{3}+1}=\frac{2}{x^{3}+1}
Deel beide zijden van de vergelijking door x^{3}+1.
y=\frac{2}{x^{3}+1}
Delen door x^{3}+1 maakt de vermenigvuldiging met x^{3}+1 ongedaan.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}
Deel 2 door x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}\text{, }y\neq 0
Variabele y kan niet gelijk zijn aan 0.
2y^{-1}=x^{3}+1
Vermenigvuldig beide zijden van de vergelijking met 2.
2\times \frac{1}{y}=x^{3}+1
Rangschik de termen opnieuw.
2\times 1=yx^{3}+y
Variabele y kan niet gelijk zijn aan 0 omdat deling door nul niet is gedefinieerd. Vermenigvuldig beide zijden van de vergelijking met y.
2=yx^{3}+y
Vermenigvuldig 2 en 1 om 2 te krijgen.
yx^{3}+y=2
Verwissel de kanten zodat alle variabelen zich aan de linkerkant bevinden.
\left(x^{3}+1\right)y=2
Combineer alle termen met y.
\frac{\left(x^{3}+1\right)y}{x^{3}+1}=\frac{2}{x^{3}+1}
Deel beide zijden van de vergelijking door x^{3}+1.
y=\frac{2}{x^{3}+1}
Delen door x^{3}+1 maakt de vermenigvuldiging met x^{3}+1 ongedaan.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}
Deel 2 door x^{3}+1.
y=\frac{2}{\left(x+1\right)\left(x^{2}-x+1\right)}\text{, }y\neq 0
Variabele y kan niet gelijk zijn aan 0.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}