Overslaan en naar de inhoud gaan
Oplossen voor x
Tick mark Image
Grafiek

Vergelijkbare problemen van Web Search

Delen

±6,±3,±2,±1
Volgens de stelling over rationale wortels hebben alle rationale wortels van een polynoom de vorm \frac{p}{q}, waarbij p de constante term -6 deelt en q de leidende coëfficiënt 1 deelt. Alle kandidaten \frac{p}{q} weergeven.
x=-2
Zoek één wortel door alle gehele getallen te proberen, van de kleinste waarde naar de absolute waarde. Als er geen gehele getallen zijn gevonden, probeert u breuken.
x^{2}+x-3=0
Op basis van de factorstelling is x-k een factor van de polynoom voor elke wortel k. Deel x^{3}+3x^{2}-x-6 door x+2 om x^{2}+x-3 te krijgen. De vergelijking oplossen waar het resultaat gelijk is aan 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-3\right)}}{2}
Alle vergelijkingen met de notatie ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Vervang a door 1, b door 1 en c door -3 in de kwadratische formule.
x=\frac{-1±\sqrt{13}}{2}
Voer de berekeningen uit.
x=\frac{-\sqrt{13}-1}{2} x=\frac{\sqrt{13}-1}{2}
De vergelijking x^{2}+x-3=0 oplossen wanneer ± plus en ± minteken is.
x=-2 x=\frac{-\sqrt{13}-1}{2} x=\frac{\sqrt{13}-1}{2}
Vermeld alle gevonden oplossingen.