Oplossen voor x
x=8
x=13
Grafiek
Delen
Gekopieerd naar klembord
a+b=-21 ab=104
Als u de vergelijking wilt oplossen, x^{2}-21x+104 u formule x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) gebruiken. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,-104 -2,-52 -4,-26 -8,-13
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b negatief is, zijn a en b negatief. Alle paren met gehele getallen die een product 104 geven weergeven.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Bereken de som voor elk paar.
a=-13 b=-8
De oplossing is het paar dat de som -21 geeft.
\left(x-13\right)\left(x-8\right)
Herschrijf factor-expressie \left(x+a\right)\left(x+b\right) de verkregen waarden gebruiken.
x=13 x=8
Als u oplossingen voor vergelijkingen zoekt, lost u x-13=0 en x-8=0 op.
a+b=-21 ab=1\times 104=104
Als u de vergelijking wilt oplossen, verdeelt u de linker-en rechterkant van de groepering. De eerste, de linkerzijde moet worden herschreven als x^{2}+ax+bx+104. Als u a en b wilt zoeken, moet u een systeem instellen dat kan worden opgelost.
-1,-104 -2,-52 -4,-26 -8,-13
Omdat ab positief is, a en b hetzelfde teken. Omdat a+b negatief is, zijn a en b negatief. Alle paren met gehele getallen die een product 104 geven weergeven.
-1-104=-105 -2-52=-54 -4-26=-30 -8-13=-21
Bereken de som voor elk paar.
a=-13 b=-8
De oplossing is het paar dat de som -21 geeft.
\left(x^{2}-13x\right)+\left(-8x+104\right)
Herschrijf x^{2}-21x+104 als \left(x^{2}-13x\right)+\left(-8x+104\right).
x\left(x-13\right)-8\left(x-13\right)
Beledigt x in de eerste en -8 in de tweede groep.
\left(x-13\right)\left(x-8\right)
Factoriseer de gemeenschappelijke term x-13 door gebruik te maken van distributieve eigenschap.
x=13 x=8
Als u oplossingen voor vergelijkingen zoekt, lost u x-13=0 en x-8=0 op.
x^{2}-21x+104=0
Alle vergelijkingen van de vorm ax^{2}+bx+c=0 kunnen worden opgelost met behulp van de kwadratische formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. De kwadratische formule biedt twee oplossingen: één wanneer ± een optelling is en één wanneer het gaat om aftrekken.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 104}}{2}
Deze vergelijking heeft de standaardvorm: ax^{2}+bx+c=0. Substitueer 1 voor a, -21 voor b en 104 voor c in de kwadratische formule, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 104}}{2}
Bereken de wortel van -21.
x=\frac{-\left(-21\right)±\sqrt{441-416}}{2}
Vermenigvuldig -4 met 104.
x=\frac{-\left(-21\right)±\sqrt{25}}{2}
Tel 441 op bij -416.
x=\frac{-\left(-21\right)±5}{2}
Bereken de vierkantswortel van 25.
x=\frac{21±5}{2}
Het tegenovergestelde van -21 is 21.
x=\frac{26}{2}
Los nu de vergelijking x=\frac{21±5}{2} op als ± positief is. Tel 21 op bij 5.
x=13
Deel 26 door 2.
x=\frac{16}{2}
Los nu de vergelijking x=\frac{21±5}{2} op als ± negatief is. Trek 5 af van 21.
x=8
Deel 16 door 2.
x=13 x=8
De vergelijking is nu opgelost.
x^{2}-21x+104=0
Kwadratische vergelijkingen zoals deze kunnen worden opgelost door de wortel te berekenen. Hiervoor moet de vergelijking deze vorm hebben: x^{2}+bx=c.
x^{2}-21x+104-104=-104
Trek aan beide kanten van de vergelijking 104 af.
x^{2}-21x=-104
Als u 104 aftrekt van zichzelf, is de uitkomst 0.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-104+\left(-\frac{21}{2}\right)^{2}
Deel -21, de coëfficiënt van de x term door 2 om -\frac{21}{2} op te halen. Voeg vervolgens het kwadraat van -\frac{21}{2} toe aan beide kanten van de vergelijking. Met deze stap wordt de linkerkant van de vergelijking een perfect vierkant.
x^{2}-21x+\frac{441}{4}=-104+\frac{441}{4}
Bereken de wortel van -\frac{21}{2} door de wortel te berekenen van zowel de teller als de noemer van de breuk.
x^{2}-21x+\frac{441}{4}=\frac{25}{4}
Tel -104 op bij \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{25}{4}
Factoriseer x^{2}-21x+\frac{441}{4}. In het algemeen, wanneer x^{2}+bx+c een perfect vierkant is, kan het altijd worden gefactoreerd als \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Neem de vierkantswortel van beide zijden van de vergelijking.
x-\frac{21}{2}=\frac{5}{2} x-\frac{21}{2}=-\frac{5}{2}
Vereenvoudig.
x=13 x=8
Tel aan beide kanten van de vergelijking \frac{21}{2} op.
Voorbeelden
Vierkantsvergelijking
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaire vergelijking
y = 3x + 4
Rekenen
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Stelselvergelijking
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiëren
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreren
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limieten
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}